Answer to Question #208212 in Algebra for Zethu

Question #208212

Suppose the functions f, g, h and l are as follows:

F(x)=4x^2-5x+1

g(x)=2√2-x/2-x

h(x)=-1/2x+3

l(x)= log4(x+3)-log4(x-2)

3.1 write down Df and solve the inequality f(x)<=0

3.2 Write down Dg, Dh and Dg+h.

3.3 Solve the equation g(x)=-4

3.4 Solve the equation 4^h(x)=8

3.5 Write down Dl and solve the equation l(x)= 1/2


1
Expert's answer
2021-06-18T11:48:58-0400
f(x)=4x25x+1f(x)=4x^2-5x+1

g(x)=22x2xg(x)=\dfrac{2\sqrt{2-x}}{2-x}

h(x)=12x+3h(x)=-\dfrac{1}{2x+3}

l(x)=log4(x+3)log4(x2)l(x)=\log_4(x+3)-\log_4(x-2)

3.1


f(x)=4x25x+1f(x)=4x^2-5x+1

Df:(,)Df:(-\infin, \infin)


f(x)0=>4x25x+10f(x)\leq 0=>4x^2-5x+1\leq 0

4x24xx+104x^2-4x-x+1\leq 0

4x(x1)(x1)04x(x-1)-(x-1)\leq 0

4(x1)(x14)04(x-1)(x-\dfrac{1}{4})\leq 0

14x1\dfrac{1}{4}\leq x\leq 1

x[14,1]x\in\big[\dfrac{1}{4}, 1\big]

3.2


g(x)=22x2xg(x)=\dfrac{2\sqrt{2-x}}{2-x}


2x0 and 2x02-x\geq0\ and \ 2-x\not=0

Then x<2x<2

Dg:(,2)Dg: (-\infin, 2)


h(x)=12x+3h(x)=-\dfrac{1}{2x+3}


2x+302x+3\not=0

Then x32x\not=-\dfrac{3}{2}


Dh:(,32)(32,)Dh: (-\infin, -\dfrac{3}{2})\cup(-\dfrac{3}{2}, \infin)



(g+h)(x)=22x2x12x+3(g+h)(x)=\dfrac{2\sqrt{2-x}}{2-x}-\dfrac{1}{2x+3}

D(g+h):(,32)(32,2)D(g+h): (-\infin,- \dfrac{3}{2})\cup(-\dfrac{3}{2}, 2)


3.3


g(x)=4g(x)=4

22x2x=4,x<2\dfrac{2\sqrt{2-x}}{2-x}=4, x<2

2x=12\sqrt{2-x}=\dfrac{1}{2}

2x=(12)22-x=(\dfrac{1}{2})^2

x=74x=\dfrac{7}{4}

3.4


4h(x)=84^{h(x)}=8

4h(x)=43/24^{h(x)}=4^{3/2}

h(x)=32h(x)=\dfrac{3}{2}

12x+3=32-\dfrac{1}{2x+3}=\dfrac{3}{2}

6x+9=26x+9=-2

6x=116x=-11

x=116x=-\dfrac{11}{6}

x=116x=-\dfrac{11}{6}


3.5

l(x)=log4(x+3)log4(x2)l(x)=\log_4(x+3)-\log_4(x-2)

x+3>0 and x2>0x+3>0\ and\ x-2 >0

x>2x>2

Dl:(2,)Dl: (2, \infin)


l(x)=12l(x)=\dfrac{1}{2}

log4(x+3)log4(x2)=12,x>2\log_4(x+3)-\log_4(x-2)=\dfrac{1}{2}, x>2

log4x+3x2=12\log_4\dfrac{x+3}{x-2}=\dfrac{1}{2}

x+3x2=41/2\dfrac{x+3}{x-2}=4^{1/2}

x+3x2=2\dfrac{x+3}{x-2}=2

x+3=2x4x+3=2x-4

x=7x=7

x=7x=7



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment