Suppose the functions f, g, h and l are as follows:
F(x)=4x^2-5x+1
g(x)=2√2-x/2-x
h(x)=-1/2x+3
l(x)= log4(x+3)-log4(x-2)
3.1 write down Df and solve the inequality f(x)<=0
3.2 Write down Dg, Dh and Dg+h.
3.3 Solve the equation g(x)=-4
3.4 Solve the equation 4^h(x)=8
3.5 Write down Dl and solve the equation l(x)= 1/2
"g(x)=\\dfrac{2\\sqrt{2-x}}{2-x}"
"h(x)=-\\dfrac{1}{2x+3}"
"l(x)=\\log_4(x+3)-\\log_4(x-2)"
3.1
"Df:(-\\infin, \\infin)"
"4x^2-4x-x+1\\leq 0"
"4x(x-1)-(x-1)\\leq 0"
"4(x-1)(x-\\dfrac{1}{4})\\leq 0"
"\\dfrac{1}{4}\\leq x\\leq 1"
"x\\in\\big[\\dfrac{1}{4}, 1\\big]"
3.2
Then "x<2"
"Dg: (-\\infin, 2)"
Then "x\\not=-\\dfrac{3}{2}"
"Dh: (-\\infin, -\\dfrac{3}{2})\\cup(-\\dfrac{3}{2}, \\infin)"
"D(g+h): (-\\infin,- \\dfrac{3}{2})\\cup(-\\dfrac{3}{2}, 2)"
3.3
"\\dfrac{2\\sqrt{2-x}}{2-x}=4, x<2"
"\\sqrt{2-x}=\\dfrac{1}{2}"
"2-x=(\\dfrac{1}{2})^2"
"x=\\dfrac{7}{4}"
3.4
"4^{h(x)}=4^{3\/2}"
"h(x)=\\dfrac{3}{2}"
"-\\dfrac{1}{2x+3}=\\dfrac{3}{2}"
"6x+9=-2"
"6x=-11"
"x=-\\dfrac{11}{6}"
"x=-\\dfrac{11}{6}"
3.5
"l(x)=\\log_4(x+3)-\\log_4(x-2)""x+3>0\\ and\\ x-2 >0"
"x>2"
"Dl: (2, \\infin)"
"\\log_4(x+3)-\\log_4(x-2)=\\dfrac{1}{2}, x>2"
"\\log_4\\dfrac{x+3}{x-2}=\\dfrac{1}{2}"
"\\dfrac{x+3}{x-2}=4^{1\/2}"
"\\dfrac{x+3}{x-2}=2"
"x+3=2x-4"
"x=7"
"x=7"
Comments
Leave a comment