f(x)=4x2−5x+1
g(x)=2−x22−x
h(x)=−2x+31
l(x)=log4(x+3)−log4(x−2) 3.1
f(x)=4x2−5x+1 Df:(−∞,∞)
f(x)≤0=>4x2−5x+1≤0
4x2−4x−x+1≤0
4x(x−1)−(x−1)≤0
4(x−1)(x−41)≤0
41≤x≤1
x∈[41,1]
3.2
g(x)=2−x22−x
2−x≥0 and 2−x=0 Then x<2
Dg:(−∞,2)
h(x)=−2x+31
2x+3=0 Then x=−23
Dh:(−∞,−23)∪(−23,∞)
(g+h)(x)=2−x22−x−2x+31 D(g+h):(−∞,−23)∪(−23,2)
3.3
g(x)=4
2−x22−x=4,x<2
2−x=21
2−x=(21)2
x=47 3.4
4h(x)=8
4h(x)=43/2
h(x)=23
−2x+31=23
6x+9=−2
6x=−11
x=−611 x=−611
3.5
l(x)=log4(x+3)−log4(x−2)
x+3>0 and x−2>0 x>2
Dl:(2,∞)
l(x)=21
log4(x+3)−log4(x−2)=21,x>2
log4x−2x+3=21
x−2x+3=41/2
x−2x+3=2
x+3=2x−4
x=7 x=7
Comments
Leave a comment