Determine when matthew first ranked his intensity at 7.5. f(x)=5sin 3.14/2(n-2)+5
f(x)=7.5f(x)=7.5f(x)=7.5
5sin[3.142(n−2)]+5=7.55sin[\frac{3.14}{2}(n-2)]+5=7.55sin[23.14(n−2)]+5=7.5
Subtract 5 both sides:
5sin[3.142(n−2)]+5−5=7.5−55sin[\frac{3.14}{2}(n-2)]+5-5=7.5-55sin[23.14(n−2)]+5−5=7.5−5
5sin[3.142(n−2)]=2.55sin[\frac{3.14}{2}(n-2)]=2.55sin[23.14(n−2)]=2.5
Divide by 5 both sides
sin[3.142(n−2)]=2.5÷5sin[\frac{3.14}{2}(n-2)]=2.5÷5sin[23.14(n−2)]=2.5÷5
sin[3.142(n−2)]=12sin[\frac{3.14}{2}(n-2)]=\frac{1}{2}sin[23.14(n−2)]=21
π2(n−2)=π6wherebyπ=3.14\frac{\pi}{2}(n-2)=\frac{π}{6}\\ wherebyπ=3.142π(n−2)=6πwherebyπ=3.14
n−2=13n-2=\frac{1}{3}n−2=31
Add 2 both sides
n=13+2n=73n=\frac{1}{3}+2\\n=\frac{7}{3}n=31+2n=37
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment