Answer to Question #208317 in Algebra for rea

Question #208317

Determine when matthew first ranked his intensity at 7.5. f(x)=5sin 3.14/2(n-2)+5


1
Expert's answer
2021-06-21T15:40:17-0400

f(x)=7.5f(x)=7.5

5sin[3.142(n2)]+5=7.55sin[\frac{3.14}{2}(n-2)]+5=7.5

Subtract 5 both sides:

5sin[3.142(n2)]+55=7.555sin[\frac{3.14}{2}(n-2)]+5-5=7.5-5

5sin[3.142(n2)]=2.55sin[\frac{3.14}{2}(n-2)]=2.5

Divide by 5 both sides

sin[3.142(n2)]=2.5÷5sin[\frac{3.14}{2}(n-2)]=2.5÷5

sin[3.142(n2)]=12sin[\frac{3.14}{2}(n-2)]=\frac{1}{2}

π2(n2)=π6wherebyπ=3.14\frac{\pi}{2}(n-2)=\frac{π}{6}\\ wherebyπ=3.14

n2=13n-2=\frac{1}{3}

Add 2 both sides

n=13+2n=73n=\frac{1}{3}+2\\n=\frac{7}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment