Question #193680

1.Use log properties to condense:

a. log8x + log8p

b. logx1= 0


2.Rewrite into log form:

a. 5x = 25

b. 13/4 = 1/64


3.Solve 63x+5= 6x-2

1
Expert's answer
2021-05-17T17:04:51-0400

(1)

(a)For a part we will use the property

loga(x×y)=loga(x)+loga(y)log_a(x\times y) = log_a(x) + log_a(y)

So we have ,log8x+log8(p)=log8(x×p)log_8x + log_8(p) = log_8^{(x\times p)}  

log8(xp)log_8^{(xp)}


b) in second part it is already given 

This is the property of log that log(1) at any base is zero.

So 

logx(1)=0log_x(1) = 0


(2)

To find log form

formula

if Mn=pif \space M^{n}=p

then n=log Mpn=log \space M^{p}

hence m is the base of the log

(a)

5x=255^{x} = 25

x=log525x=log _5^{25}

hence base =5=5


(b)

(14)3=164(\frac{1}{4} )^{3}=\frac{ 1}{64}

3=log(14)1643=log(\frac{1}{4})^\frac{1}{64}

hence base=14=\frac{1}{4}


(3)

if ax=ay, then x=yif\space a^x=a^{y} , \space then\space x=y

hence given equation 63x+5=6x26^{3x+5}= 6^{x-2}

3x+5=x23x+5=x-2

2x=72x=-7

x=72x=-\frac{7}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS