1.Sketch the graph that represents y=6log(x-7) + 2
https://lh4.googleusercontent.com/vEwh848sXA94dOj_DL12sGCfgXDI3l8rjJhXKAjI_Q-Uchbs3kZsaPRPgLOrj6n69i3veT3nJJ8MUKBNFzUUA9JTemem1lvlvg_2BzTPGMVF7ls1pB7MjvRowIpBE_9sBu-fNUUQ
2.Write the equation of the parent function y=3sqaure root of x includes the following transformations
a. Vertical compression of 1/5
b. Left 5
c. Down 8
Equation:
3.Use log properties to expand
a. log710x
b. log2(x/5)
1.
the equation of the function is: "y=6\\space log(x\u22127)+2"
2.
"y^3=\\sqrt x"
a.
vertical compression of "\\frac{1}{5}"
when we multiply a function by a positive constant
we get a function whose graph is stretched or compressed vertically in relation to the graph of the original function.
"y^3=\\frac{1}{5}\\sqrt x"
b.
Left 5
To shift a function left, add inside the function argument; "f(x+b)"
"y^3=\\sqrt{x+5}"
c.
down 8
"y^3=\\sqrt x -8"
3.
a.
"log_710x"
Apply log rule: "log_c(ab)=log_c(a)+log_c(b)"
"log_7(10x)=log_7(10)+log_7(x)"
"=log_7(10)+log_7(x)"
b.
"log_2(\\frac{x}{5})"
Apply log rule: "log_c(\\frac{a}{b}) =log_c(a)-log_c(b)"
"log_2(\\frac{x}{5})=log_2(x)-log_2(5)"
Comments
Leave a comment