- Suppose A=4,3,6,7,1,9, B=5,6,8,4 and C=5,8,4. Find:
(a) A∪B=1,3,4,5,6,7,8,9
(e) B−A=5,8
(h) B∪C=5,6,8,4
3. Suppose A=0,1 and B=1,2 . Find:
(a) (AxB)∩(BxB)=(1,1),(1,2)
(d) (A∩B)xA=(1,0),(1,1)
(i) P(AxB)=∅,(0,1),(0,2),(1,1),(1,2),(0,1),(0,2),(0,1),(1,1),(0,1),(1,2),(0,2),(1,1),
(0,2),(1,2),(1,1),(1,2),(0,2),(1,1),(1,2),(0,1),(1,1),(1,2),(0,1),(0,2),(1,2),
(0,1),(0,2),(1,1),(0,1),(0,2),(1,1),(1,2)
6.
10.No because (R−Z)xN=(RxN)−(ZxN)
which means that (RxN)−(ZxN) is not equal to (RxN)−(Z−N)
Comments
Leave a comment