A. Write out the indicated sets by listing their elements between braces.
2. Suppose A={π,e,0} and B={0,1}
(a) AxB
(b) BxA
(c) AxA
(d) BxB
(e) ØxB
(f) (AxB)xB
(g) Ax(BxB)
(h) AxBxB
4. {nϵZ:2<n<5}x{nϵZ:│n│=5}
B. Sketch these Cartesian products on the x-y plane R2.
10. {-1,0,1}x{1,2,3}
12. [-1,1]x[1,2]
14. [1,2]x{1,1.5,2}
16. [0,1]x{1}
Solution.
A.
2. "A=\\{\u03c0,e,0\\},B=\\{0,1\\}."
(a) "A\u00d7B=\\{(\u03c0,0),(\u03c0,1),(e,0),(e,1),\\newline(0,0),(0,1)\\}.\n\\newline\\text{(b)}""B\u00d7A=\\{(0,\u03c0),(0,e),(0,1),(1,\u03c0),\\newline(1,e),(1,0)\\}."
(c)
"A\u00d7A=\\{(\u03c0,\u03c0),(\u03c0,e),(\u03c0,0),(e,\u03c0),(e,e),(e,0),\\newline(0,\u03c0),(0,e),(0,0)\\}."
(d)
"B\u00d7B=\\{(0,0),(0,1),(1,0),(1,1)\\}."
(e)
"\u00d8\u00d7B=\u00d8."
(f)
"(A\u00d7B)\u00d7B=\\{(\u03c0,0,0),(\u03c0,0,1),(\u03c0,1,0),(\u03c0,1,1)\\newline\n(e,0,0),(e,0,1),(e,1,0),(e,1,1)\n\\newline\n(0,0,0),(0,0,1),(0,1,0),(0,1,1)\\}."
(g)
"A\u00d7(B\u00d7B)=\\{(\u03c0,0,0),(\u03c0,0,1),(\u03c0,1,0),(\u03c0,1,1)\\newline\n(e,0,0),(e,0,1),(e,1,0),(e,1,1)\n\\newline\n(0,0,0),(0,0,1),(0,1,0),(0,1,1)\\}."
(h)
"A\u00d7B\u00d7B=\\{(\u03c0,0,0),(\u03c0,0,1),(\u03c0,1,0),(\u03c0,1,1)\\newline\n(e,0,0),(e,0,1),(e,1,0),(e,1,1)\n\\newline\n(0,0,0),(0,0,1),(0,1,0),(0,1,1)\\}."
4.
"\\{n\\in Z|2<n<5\\}\u00d7\\{n\\in Z| |n|=5\\}=\\{(3,-5),(3,-4),(3,-3),(3,-2)\\newline\n(3,-1),(3,0),(3,1),(3,2),(3,3)\\newline\n(3,4),(3,5),(4,-5),(4,-4),(4,-3)\n\\newline (4,-2),(4,-1),(4,0),(4,1),\\newline\n(4,2),(4,3),(4,4),(4,5)\\}."
B.
10.
12.
14.
16.
Comments
Leave a comment