(x+2) is a factor of the cubic function f(x) = x3 + 2x2-3x +1. Use the reminder theorem to completely factorise the polynomial.
x3+2x2−3x+1x+2=x3+2x2x+2+1−3xx+2=x2(x+2)x+2+1−3(x+2)+6x+2=x2(x+2)x+2+−3(x+2)x+2+7x+2\dfrac{x^3 +2x^2-3x+1}{x+2} = \dfrac{x^3 +2 x^2}{x+2} + \dfrac{1-3x}{x+2} = \dfrac{x^2(x+2)}{x+2} + \dfrac{1-3(x+2)+6}{x+2} = \dfrac{x^2(x+2)}{x+2} + \dfrac{-3(x+2)}{x+2} + \dfrac{7}{x+2}x+2x3+2x2−3x+1=x+2x3+2x2+x+21−3x=x+2x2(x+2)+x+21−3(x+2)+6=x+2x2(x+2)+x+2−3(x+2)+x+27
⟹ x3+2x2−3x+1=(x2−3)(x+2)+7\implies x^3 + 2x^2- 3x +1 = (x^2-3)(x+2) +7⟹x3+2x2−3x+1=(x2−3)(x+2)+7
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments