1).
p x 2 + 2 p x − 3 < 0 px^2 +2px-3\lt0 p x 2 + 2 p x − 3 < 0
if x is real then, solution of x is:
x = − 2 p ± ( 2 p ) 2 − 4 ∗ p ∗ ( − 3 ) 2 p = − 2 p ± 4 p 2 + 12 p 2 p x=\frac{-2p\pm\sqrt{(2p)^2-4*p*(-3)}}{2p}=\frac{-2p\pm\sqrt{4p^2+12p}}{2p} x = 2 p − 2 p ± ( 2 p ) 2 − 4 ∗ p ∗ ( − 3 ) = 2 p − 2 p ± 4 p 2 + 12 p
from the above equation, for the real solution of x, there are some restriction to be follow as:
p ≠ 0 p\ne0 p = 0 and
value of p lies in set as: 4 p 2 + 12 p ≥ 0 4p^2+12p\ge0 4 p 2 + 12 p ≥ 0
⟹ 4 p 2 ≥ − 12 p \implies4p^2\ge-12p ⟹ 4 p 2 ≥ − 12 p
⟹ p ≥ − 3 \implies p\ge-3 ⟹ p ≥ − 3
thus, the possible values of p are[ − 3 , ∞ ) − ( 0 ) [-3, ∞)-(0) [ − 3 , ∞ ) − ( 0 ) .
2).
x 2 + 4 x − 2 = 0 x^2+4x-2=0 x 2 + 4 x − 2 = 0
if x is real then the set of values of equation x 2 + 4 x − 2 x^2+4x-2 x 2 + 4 x − 2 is:
x = − 4 ± 4 2 − 4 ∗ 1 ∗ ( − 2 ) 2 ∗ 1 = − 4 ± 16 + 8 2 = − 2 ± 6 x=\frac{-4\pm\sqrt{4^2-4*1*(-2)}}{2*1}=\frac{-4\pm\sqrt{16+8}}{2}=-2\pm\sqrt6 x = 2 ∗ 1 − 4 ± 4 2 − 4 ∗ 1 ∗ ( − 2 ) = 2 − 4 ± 16 + 8 = − 2 ± 6
thus, the set of values of x2 + 4x - 2 = 0 are [ ( − 2 − 6 ) , ( − 2 + 6 ) ] [( -2-\sqrt6),(-2+\sqrt6)] [( − 2 − 6 ) , ( − 2 + 6 )]
Comments