15. If x is real and: px2 + 2px - 3 < 0 then the possible values of p are ?
16.if x is real the set of values of x2 + 4x - 2 = 0 is ?
1).
px2+2px−3<0px^2 +2px-3\lt0px2+2px−3<0
if x is real then, solution of x is:
x=−2p±(2p)2−4∗p∗(−3)2p=−2p±4p2+12p2px=\frac{-2p\pm\sqrt{(2p)^2-4*p*(-3)}}{2p}=\frac{-2p\pm\sqrt{4p^2+12p}}{2p}x=2p−2p±(2p)2−4∗p∗(−3)=2p−2p±4p2+12p
from the above equation, for the real solution of x, there are some restriction to be follow as:
p≠0p\ne0p=0 and
value of p lies in set as: 4p2+12p≥04p^2+12p\ge04p2+12p≥0
⟹ 4p2≥−12p\implies4p^2\ge-12p⟹4p2≥−12p
⟹ p≥−3\implies p\ge-3⟹p≥−3
thus, the possible values of p are[−3,∞)−(0)[-3, ∞)-(0)[−3,∞)−(0).
2).
x2+4x−2=0x^2+4x-2=0x2+4x−2=0
if x is real then the set of values of equation x2+4x−2x^2+4x-2x2+4x−2 is:
x=−4±42−4∗1∗(−2)2∗1=−4±16+82=−2±6x=\frac{-4\pm\sqrt{4^2-4*1*(-2)}}{2*1}=\frac{-4\pm\sqrt{16+8}}{2}=-2\pm\sqrt6x=2∗1−4±42−4∗1∗(−2)=2−4±16+8=−2±6
thus, the set of values of x2 + 4x - 2 = 0 are [(−2−6),(−2+6)][( -2-\sqrt6),(-2+\sqrt6)][(−2−6),(−2+6)]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments