11. The range of values of a for which the equation ax2+2x - 2 = 0 has real roots is:
                 A. a ≤ 1/2            B. a ≥ 1/2            C. a ≤ -1/2        D. a ≥ -1/2
Â
12. if the graph of y =x2 - 8x + m cuts the x-axis in two distinct points then
               A. m < !6                      B. m > 16                  C. m ≤ 16                  D. m ≥ 16
11.Ans:- For an equation "ax^2+bx+c=0" , "b^2-4ac" is called the discriminant and helps in determining the nature of the roots of a quadratic equation. If "b^2-4ac>0" , the roots are real and distinct. If "b^2-4ac=0" , the roots are real and equal.
Given that "ax^2+2x-2=0" has real roots.
So, "b^2-4ac\\ge0" here "b=2 , c=-2"
"\\Rightarrow" "{2}^2-4\\times{a}\\times{-2}\\ge0"
"\\Rightarrow" "a\\ge" "-\\dfrac{1}{2}"
Therefore, option (D) is correct.
12.Ans:-
condition for the quadratic equation cuts two distinct points on "x" -axis is "\\dfrac{-D}{4a}\\le0" where D is "b^2-4ac".
"\\Rightarrow" "-\\dfrac{8^2-4\\times{1}\\times{m}}{4\\times1}\\le0"
"\\Rightarrow" "m\\le16"
therefore option (C) is correct
Comments
Leave a comment