Question #163838

11. The range of values of a for which the equation ax2+2x - 2 = 0 has real roots is:

                 A. a ≤ 1/2            B. a ≥ 1/2            C. a ≤ -1/2        D. a ≥ -1/2

 

12. if the graph of y =x2 - 8x + m cuts the x-axis in two distinct points then

               A. m < !6                      B. m > 16                  C. m ≤ 16                  D. m ≥ 16


1
Expert's answer
2021-02-24T06:58:41-0500

11.Ans:- For an equation ax2+bx+c=0ax^2+bx+c=0 , b24acb^2-4ac is called the discriminant and helps in determining the nature of the roots of a quadratic equation. If b24ac>0b^2-4ac>0 , the roots are real and distinct. If b24ac=0b^2-4ac=0 , the roots are real and equal.

Given that ax2+2x2=0ax^2+2x-2=0 has real roots.

So, b24ac0b^2-4ac\ge0 here b=2,c=2b=2 , c=-2

\Rightarrow 224×a×20{2}^2-4\times{a}\times{-2}\ge0

\Rightarrow aa\ge 12-\dfrac{1}{2}

Therefore, option (D) is correct.

12.Ans:-

condition for the quadratic equation cuts two distinct points on xx -axis is D4a0\dfrac{-D}{4a}\le0 where D is b24acb^2-4ac.

\Rightarrow 824×1×m4×10-\dfrac{8^2-4\times{1}\times{m}}{4\times1}\le0


\Rightarrow m16m\le16

therefore option (C) is correct



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS