Ans 5:-
Given curve is-
y=1−2x−4x2
y=4−1(x2+2x−41)
y=−41(x2+2x+161−161−41)
y=−41(x+41)2+645
On Comparing the above equation with y=a(x−h)2+k
We get h=4−1,k=645
We get the vertex as (−41,645)
Ans 6:-
Given, 2x2−12x+11=2(x+b)2+c
2x2−12x+11=2(x2+b2+2xb)+c2x2−12x+11=2x2+2b2+4xb+c
On comparing coefficient of Both the sides
we get 4b=−12,2b2+c=11
b=4−12=−3
⇒2b2+c=11⇒c=11−2(−3)2⇒c=11−2(9)⇒c=11−18=−7
Hence The value of b=−3 and c=−7.
Comments
Leave a comment