5. The coordinates of the vertex of the curve y = 1 - 2x - 4x2 are:
6. If 2x2 - 12x + 11 ≡ 2(x + b)2 + c, then
                A. b = 6, c = -7               B. b = 3, c = -7          C. b = -3, c = -7               D. b = 3, c = 7
Ans 5:-
Given curve is-
"y=1-2x-4x^2"
"y=\\dfrac{-1}{4}(x^2+\\dfrac{x}{2}-\\dfrac{1}{4})"
"y=-\\dfrac{1}{4}(x^2+\\dfrac{x}{2}+\\dfrac{1}{16}-\\dfrac{1}{16}-\\dfrac{1}{4})"
"y=-\\dfrac{1}{4}(x+\\dfrac{1}{4})^2+\\dfrac{5}{64}"
On Comparing the above equation with "y=a(x-h)^2+k"
We get "h=\\dfrac{-1}{4},k=\\dfrac{5}{64}"
We get the vertex as "(-\\dfrac{1}{4},\\dfrac{5}{64})"
Ans 6:-
Given, "2x^2 - 12x + 11 = 2(x + b)^2 + c"
"2x^2-12x+11=2(x^2+b^2+2xb)+c\\\\2x^2-12x+11=2x^2+2b^2+4xb+c"
On comparing coefficient of Both the sides
we get "4b=-12,2b^2+c=11"
"b=\\dfrac{-12}{4}=-3"
"\\Rightarrow 2b^2+c=11\\\\\\Rightarrow c=11-2(-3)^2\\\\\\Rightarrow c=11-2(9)\\\\\\Rightarrow c=11-18=-7"
Hence The value of "b=-3 \\text{ and } c=-7."
Comments
Leave a comment