13.2x2+ nx + 5 = 0 has imaginary roots. The range of values of n is?
14.The range of values of, (x + 1)/ (x2 + 1)  X e R is?
13. For any quadratic equation to have imaginary roots, b² – 4ac must be less than 0
b² – 4ac < 0
a = 2 ; b = n ; c = 5
n² – 4(2)(5) < 0
n² – 40 < 0
n² < 40
=> "-\\sqrt{40} < n < \\sqrt{40}"
= "-2\\sqrt{10} < n < 2\\sqrt{10}"
14. Let "y = \\frac{x+1}{x\u00b2+1}"
Make x the subject
"yx\u00b2+y = x+1"
"yx\u00b2-x+y-1=0"
From the general quadratic formula
"ax\u00b2+bx+c=0"
We can say that
a = y ; b = -1; c = y-1
from the quadratic formula
"x=\\frac{-b\u00b1\\sqrt{b\u00b2-4ac}}{2a}"
"x=\\frac{-(-1)\u00b1\\sqrt{(-1)\u00b2-4(y)(y-1)}}{2y}"
"x=\\frac{1\u00b1\\sqrt{1-4(y\u00b2-y}}{2y}"
"x=\\frac{1\u00b1\\sqrt{1-4y\u00b2+4y}}{2y}"
For the above equation to be defined, then "1-4y\u00b2+4y\u22650"
-4y² + 4y + 1 ≥ 0
4y² - 4y - 1 ≤ 0
Divide through by 4
"y\u00b2-y-\\frac{1}{4} \u22640"
"y\u00b2-y+\\frac{1}{4}-\\frac{1}{4}-\\frac{1}{4}\u22640"
"y\u00b2-y+\\frac{1}{4}-\\frac{1}{2}\u22640"
Multiply through by 4
(4y² – 4y + 1) – 2 ≤ 0
(2y – 1)² – 2 ≤ 0
(2y – 1)² ≤ 2
=> "-\\sqrt{2} \u2264 2y-1\u2264\\sqrt{2}"
"-\\sqrt{2}\u22642y-1"
"2y-1\u2265-\\sqrt{2}"
"y\u2265\\frac{1-\\sqrt{2}}{2}"
=>"2y-1\u2264\\sqrt{2}"
"y \u2264 \\frac{\\sqrt{2}+1}{2}"
The range of values is
"[\\frac{1-\\sqrt{2}}{2},0) \\bigcup (0, \\frac{\\sqrt{2}+1}{2}]"
Comments
Leave a comment