Well, this question has a pretty simple solution.
You need to create the system of equations,
The first equation will be as follows:
x = 0.8 ∗ 5 + 7 + 14 + y 4 x=0.8*\dfrac{5+7+14+y}{4} x = 0.8 ∗ 4 5 + 7 + 14 + y
The second equation will be as follows:
x + y 2 = 26 \dfrac{x+y}{2}=26 2 x + y = 26
Now let's just solve this system:
{ x = 0.8 ∗ 5 + 7 + 14 + y 4 x + y 2 = 26 \begin{cases}
x=0.8*\dfrac{5+7+14+y}{4} \\
\dfrac{x+y}{2}=26
\end{cases} ⎩ ⎨ ⎧ x = 0.8 ∗ 4 5 + 7 + 14 + y 2 x + y = 26
{ x = 0.2 ∗ ( 26 + y ) x + y 2 = 26 \begin{cases}
x=0.2*(26+y) \\
\dfrac{x+y}{2}=26
\end{cases} ⎩ ⎨ ⎧ x = 0.2 ∗ ( 26 + y ) 2 x + y = 26
Let's substitute x from the first equation into the second one:
{ x = 0.2 ∗ ( 26 + y ) ( 0.2 ∗ ( 26 + y ) + y ) 2 = 26 \begin{cases}
x=0.2*(26+y) \\
\dfrac{(0.2*(26+y)+y)}{2}=26
\end{cases} ⎩ ⎨ ⎧ x = 0.2 ∗ ( 26 + y ) 2 ( 0.2 ∗ ( 26 + y ) + y ) = 26
Now simply solve the second equation:
( 0.2 ∗ ( 26 + y ) + y ) 2 = 26 \dfrac{(0.2*(26+y)+y)}{2}=26 2 ( 0.2 ∗ ( 26 + y ) + y ) = 26
0.2 * (26 + y) + y = 26*2
5.2 + 0.2y + y = 52
1.2y = 52 - 5.2
1.2y = 46.8
y = 46.8 / 1.2
y = 39
Comments