Well, this question has a pretty simple solution.
You need to create the system of equations,
The first equation will be as follows:
x=0.8∗5+7+14+y4x=0.8*\dfrac{5+7+14+y}{4}x=0.8∗45+7+14+y
The second equation will be as follows:
x+y2=26\dfrac{x+y}{2}=262x+y=26
Now let's just solve this system:
{x=0.8∗5+7+14+y4x+y2=26\begin{cases} x=0.8*\dfrac{5+7+14+y}{4} \\ \dfrac{x+y}{2}=26 \end{cases}⎩⎨⎧x=0.8∗45+7+14+y2x+y=26
{x=0.2∗(26+y)x+y2=26\begin{cases} x=0.2*(26+y) \\ \dfrac{x+y}{2}=26 \end{cases}⎩⎨⎧x=0.2∗(26+y)2x+y=26
Let's substitute x from the first equation into the second one:
{x=0.2∗(26+y)(0.2∗(26+y)+y)2=26\begin{cases} x=0.2*(26+y) \\ \dfrac{(0.2*(26+y)+y)}{2}=26 \end{cases}⎩⎨⎧x=0.2∗(26+y)2(0.2∗(26+y)+y)=26
Now simply solve the second equation:
(0.2∗(26+y)+y)2=26\dfrac{(0.2*(26+y)+y)}{2}=262(0.2∗(26+y)+y)=26
0.2 * (26 + y) + y = 26*2
5.2 + 0.2y + y = 52
1.2y = 52 - 5.2
1.2y = 46.8
y = 46.8 / 1.2
y = 39
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments