"Solution:\\\\\\frac{1}{2}+\\frac{1}{6}+\\frac{1}{12}+\\frac{1}{20}+\\frac{1}{30}+...\\\\If\\ you\\ write\\ it \\;like\\;this\\ and\\ continue:\\\\\\frac{1}{2}+\\frac{1}{2\\times3}+\\frac{1}{2\\times(3+3)}+\\frac{1}{2\\times(3+3+4)}+\\\\+\\frac{1}{2\\times(3+3+4+5)}+\\frac{1}{2\\times(3+3+4+5+6)}+\\\\+\\frac{1}{2\\times(3+3+4+5+6+7)}+\\frac{1}{2\\times(3+3+4+5+6+7+8)}+\\\\+\\frac{1}{2\\times(3+3+4+5+6+7+8+9)}+\\\\+\\frac{1}{2\\times(3+3+4+5+6+7+8+9+10)}+...\\\\This\\ is\\ the \\;tenth \\;fraction\\ of\\ the\\ sequence\\\\\\frac{1}{2\\times(3+3+4+5+6+7+8+9+10)}=\\frac{1}{110}.\\\\Answer:the\\ 10th\\ fraction\\;is\\;\\frac{1}{110}"
Comments
Leave a comment