V=(x2-1)/(k2+xk)(1/(1-(1/k))-1)((x-xk3-k4+k)/(1-x2))
V = {(x2-1)/(k2+xk)} {1/(1-(1/k)-1)} {(x-xk3-k4+k)/(1-x2)}
∴ {(x2-1)/(1-x2) = -1
V = {(-1)/(k(x+k))} {1/(k-1)} {(x+k) - xk3 - k4 }
V = {(-1)/(k(x+k))} {1/(k-1)} {1(x+k) - k3(x+k)}
V = {(-1)/(k(x+k))} {1/(k-1)} {(x+k)(1-k3)}
"\\therefore" many terms are cancel out after multiplication
V = -(1-k3)/{k(k-1)}
V = (k3-1)/(k2-k)=(k2+k+1)/k
Comments
Leave a comment