Part (a)
f(x)=(4-x^2)^(1/2)
Find the domain of f.
f(x)=(4-x^2)^(1/2)
4-x^2≥0
4≥x^2
-2≤x≤2
Domain of f: [-2, 2].
h(x)=(3-x)^(1/2)
Find the domain of h.
h(x)=(3-x)^(1/2)
3-x≥0
x≤3
domain of h: (-∞, 3].
Part (b)
Find foh(x)
foh(x)=f[h(x)]
and,
f(x)=(4-x^2)^(1/2), h(x)=(3-x)^(1/2)
f(h(x))={4-[(3-x)^(1/2)]^2}^(1/2)
f[(3-x)^(1/2)]=(1+x)^(1/2)
Therefore,
foh(x)=(x+1)^(1/2)
Comments
Leave a comment