Solution
1 0 1 3 n ⋅ 1 5 1 2 n ⋅ 6 1 6 n 4 5 1 3 n = ( 2 1 3 5 1 3 ⋅ 3 1 2 5 1 2 ⋅ 2 1 6 3 1 6 3 2 3 5 1 3 ) n = \dfrac{10^{\frac{1}{3}n}\cdot15^{\frac{1}{2}n}\cdot6^{\frac{1}{6}n}}{45^{\frac{1}{3}n}} =
\left(\dfrac{2^\frac{1}{3}5^\frac{1}{3}\cdot3^\frac{1}{2}5^\frac{1}{2}\cdot2^\frac{1}{6}3^\frac{1}{6}}{3^\frac{2}{3}5^\frac{1}{3}}\right)^n = 4 5 3 1 n 1 0 3 1 n ⋅ 1 5 2 1 n ⋅ 6 6 1 n = ( 3 3 2 5 3 1 2 3 1 5 3 1 ⋅ 3 2 1 5 2 1 ⋅ 2 6 1 3 6 1 ) n =
= ( 2 ( 1 3 + 1 6 ) ⋅ 3 ( 1 2 + 1 6 − 2 3 ) ⋅ 5 ( 1 3 + 1 2 − 1 3 ) ) n = ( 2 1 2 ⋅ 3 0 ⋅ 5 1 2 ) n = ( 10 ) n =\left(2^{\left(\frac{1}{3}+\frac{1}{6}\right)}\cdot3^{\left(\frac{1}{2}+\frac{1}{6}-\frac{2}{3}\right)}\cdot5^{\left(\frac{1}{3}+\frac{1}{2}-\frac{1}{3}\right)}\right)^n =
\left(2^{\frac{1}{2}}\cdot3^0\cdot5^{\frac{1}{2}} \right)^n = \left(\sqrt{10}\right)^n = ( 2 ( 3 1 + 6 1 ) ⋅ 3 ( 2 1 + 6 1 − 3 2 ) ⋅ 5 ( 3 1 + 2 1 − 3 1 ) ) n = ( 2 2 1 ⋅ 3 0 ⋅ 5 2 1 ) n = ( 10 ) n
Answer
10^(1/2)n
Comments