Question #125183
Two functions f and g are defined on the set R of real numbers by
f(x) = ax2 + bx − 2 and g(x) = 3x + 2. If f(1) = 7 and f(2) = 10. Find:
(a) the values of a and b;
(b) the value(s) of x if f(x) = g(x) − 1.
1
Expert's answer
2020-07-14T17:55:49-0400

a) Given that f(x)=ax2+bx2f(1)=7 and f(2)=10Substituting x=1 in f(x) and equating to 7, we geta(1)2+b(1)2=7 a+b=9...(1)a) \ Given \ that \ f(x)=ax^2+bx-2 \\ f(1)=7 \ and \ f(2)=10\\ Substituting \ {x= 1} \ in \ f(x) \ and \ equating \ to \ 7, \ we \ get \\ a(1)^2+b(1)-2=7 \\\Rightarrow \ a+b =9 ...(1) \\ Substituting x=2 in f(x) and equating to 10, we geta(2)2+b(2)2=104a+2b=12Dividing with 2, we get 2a+b=6...(2)Substituting \ {x = 2} \ in \ f(x) \ and \ equating \ to \ 10, \ we \ get \\ a(2)^2+b(2)-2=10 \\ 4a+2b=12 \\ Dividing \ with \ {2}, \ we \ get \ 2a+b=6 ...(2)\\From the equation(1), b=9a...(3)Substituting b=9a in (2), we get2a+9a=6 a+9=6 a=69=3a=3Substituting a=3,in (3),we get b=9(3)=12b=12.From \ the \ equation (1), \ { b = 9-a} ...(3)\\ Substituting \ {b=9-a} \ in \ {(2)},\ we \ get \\ 2a+9-a=6 \\ \Rightarrow \ {a+9=6} \\ \Rightarrow \ {a= 6-9=-3}\\ \therefore a =-3\\ Substituting \ {a=-3}, in \ (3), we \ get \ {b= 9-(-3)=12} \\ \therefore b=12. b) Given that f(x)=g(x)1 and g(x)=3x+2 ax2+bx2=3x+2Substituting a=3 and b=12, we getb)\ Given \ that \ {f(x)= g(x)-1} \ and \ {g(x)=3x+2} \\ \Rightarrow \ ax^2+bx-2=3x+2\\ Substituting \ {a= -3} \ and \ {b=12} , \ we \ get \\ 3x2+12x2=3x+21 3x2+12x3x22+1=0 3x2+9x3=0Dividing with 3, we get x23x+1=0The roots of a quadratic are given byx=b±b24ac2a-3x^2+12x-2=3x+2-1\\ \Rightarrow \ -3x^2+12x-3x-2-2+1=0\\ \Rightarrow \ -3x^2+9x-3=0 \\ Dividing \ with \ {-3},\ we \ get \ {x^2-3x+1=0} \\ The \ roots \ of \ a \ quadratic \ are \ given \ by \\ x= \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\ Substituting a=1, b=3 and c=1, we getx=(3)±(3)24(1)(1)2(1)=3±942=3±52Substituting \ {a=1},\ {b=-3} \ and \ {c=1}, \ we \ get \\ x=\frac{-(-3)\pm\sqrt{(-3)^2-4(1)(1)}}{2(1)}\\ =\frac{3\pm\sqrt{9-4}}{2}\\ =\frac{3\pm\sqrt{5}}{2}\\ x1=3+52 and x2=352.\therefore { x_{1}=\frac{3+\sqrt{5}}{2}} \ and \ {x_{2}= \frac{3-\sqrt{5}}{2}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS