Answer to Question #309882 in Abstract Algebra for badshah

Question #309882

Find the multiplicative inverse of 197 modulo 3000. Highlight each step clearly.


1
Expert's answer
2022-03-15T19:17:04-0400

Euclid’s algorithm:

3000=15197+45197=445+1745=217+1117=11+611=6+56=5+13000=15\cdot 197+45\\197=4\cdot 45+17\\45=2\cdot 17+11\\17=11+6\\11=6+5\\6=5+1

The inverse procedure:

1=65=(1711)(116)=17211+6==(197445)2(45217)+(1711)==197645+51711==1976(300015197)+5(197445)(45217)==63000+961972145+217==63000+9619721(300015197)+2(197445)==273000+413197845==273000+4131978(300015197)==353000+5331971=6-5=\left( 17-11 \right) -\left( 11-6 \right) =17-2\cdot 11+6=\\=\left( 197-4\cdot 45 \right) -2\left( 45-2\cdot 17 \right) +\left( 17-11 \right) =\\=197-6\cdot 45+5\cdot 17-11=\\=197-6\left( 3000-15\cdot 197 \right) +5\left( 197-4\cdot 45 \right) -\left( 45-2\cdot 17 \right) =\\=-6\cdot 3000+96\cdot 197-21\cdot 45+2\cdot 17=\\=-6\cdot 3000+96\cdot 197-21\left( 3000-15\cdot 197 \right) +2\left( 197-4\cdot 45 \right) =\\=-27\cdot 3000+413\cdot 197-8\cdot 45=\\=-27\cdot 3000+413\cdot 197-8\left( 3000-15\cdot 197 \right) =\\=-35\cdot 3000+533\cdot 197

Then

197533=1mod30001971=533mod3000197\cdot 533=1\mathrm{mod}3000\Rightarrow 197^{-1}=533\mathrm{mod}3000


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment