Find the multiplicative inverse of 197 modulo 3000. Highlight each step clearly.
Euclid’s algorithm:
"3000=15\\cdot 197+45\\\\197=4\\cdot 45+17\\\\45=2\\cdot 17+11\\\\17=11+6\\\\11=6+5\\\\6=5+1"
The inverse procedure:
"1=6-5=\\left( 17-11 \\right) -\\left( 11-6 \\right) =17-2\\cdot 11+6=\\\\=\\left( 197-4\\cdot 45 \\right) -2\\left( 45-2\\cdot 17 \\right) +\\left( 17-11 \\right) =\\\\=197-6\\cdot 45+5\\cdot 17-11=\\\\=197-6\\left( 3000-15\\cdot 197 \\right) +5\\left( 197-4\\cdot 45 \\right) -\\left( 45-2\\cdot 17 \\right) =\\\\=-6\\cdot 3000+96\\cdot 197-21\\cdot 45+2\\cdot 17=\\\\=-6\\cdot 3000+96\\cdot 197-21\\left( 3000-15\\cdot 197 \\right) +2\\left( 197-4\\cdot 45 \\right) =\\\\=-27\\cdot 3000+413\\cdot 197-8\\cdot 45=\\\\=-27\\cdot 3000+413\\cdot 197-8\\left( 3000-15\\cdot 197 \\right) =\\\\=-35\\cdot 3000+533\\cdot 197"
Then
"197\\cdot 533=1\\mathrm{mod}3000\\Rightarrow 197^{-1}=533\\mathrm{mod}3000"
Comments
Leave a comment