1(a)) Given that the map π : G → G defined by π(g) = g ∗ g.
π(g1∗g2)=(g1∗g2)∗(g1∗g2)=g1∗(g2∗g1)∗g2 (because G is a group).
=g1∗(g1∗g2)∗g2 iff (G,∗) is an abelian group
⟹π(g1∗g2)=(g1∗g1)∗(g2∗g2)=π(g1)∗π(g2)
Thus, Given mapping is homomorphism if and only if G is abelian group.
1(b)) Given P={a2t2+a1t+a0∣a2+a1=a0 and a2,a1,a0∈R} .
(i) Closure: Let A∈P,B∈P , so A=a2t2+a1t+a0,B=a2′t2+a1′t+a0′
and a2+a1=a0,a2′+a1′=a0′.
So, (a2+a2′)+(a1+a1′)=a0+a0′ and A+B∈P . Hence, Closure property holds.
(ii) Associative: Also, (A+B)+C=A+(B+C) ∀ A,B,C∈P .
Hence, Associativity property holds.
(iii) Identity: ∃ 0∈P:0+A=A for all A∈P . Hence, 0 is identity exists in P.
(iv) Inverse: ∀ A∈P, ∃ B=−A∈P:A+B=0 .
Hence, the set P is group under addition.
1(c)) Given the set X = R\{−1} with the binary relation ∗ defined by x ∗ y = x + y + xy.
Now, 5∗x∗2=−19⟹(5+x+5x)∗2=−19
⟹5+x+5x+2+10+2x+10x=−19⟹17+18x=−19⟹18x=−36⟹x=−2
Comments