Answer to Question #121749 in Abstract Algebra for Henry

Question #121749
Let f be a degree two polynomial over R in n-variables and a = (a1, . . . , an) a
critical point of f. Show that there is a homogenous degree two polynomial Q
such that
f(x) − f(a) = Q(x − a) (x ∈ Rn
)
1
Expert's answer
2020-06-11T15:54:41-0400

Consider a polynomial of two variables x1,x2x_1, x_2

f(x1,x2)=c11x12+c22x22+c12x1x2++c1x1+c2x2+cf(x_1,x_2)=c_{11}x_1^2+c_{22}x_2^2+c_{12}x_1x_2+\\ +c_1x_1+c_2x_2+c

a=(a1,a2)a=(a_1,a_2) - critical point of ff :

f(a)x1=2c11a1+c12a2+c1=0f(a)x2=2c22a2+c12a1+c2=0\frac{\partial f(a)}{\partial x_1}=2c_{11}a_1+c_{12}a_2+c_1=0\\ \frac{\partial f(a)}{\partial x_2}=2c_{22}a_2+c_{12}a_1+c_2=0

Consider a polynomial

f(x)f(a)=c11x12+c22x22+c12x1x2++c1x1+c2x2+cc11a12c22a22c12a1a2c1a1c2a2c==c11(x1a1)(x1+a1)++c22(x2a2)(x2+a2)++c12(x1x2a1x2+a1x2a1a2)++c1(x1a1)+c2(x2a2)==c11(x1a1)(x1+a1)++c22(x2a2)(x2+a2)++c12x2(x1a1)+c12a1(x2a2)++c1(x1a1)+c2(x2a2)==(x1a1)(c11(x1+a1)+c12x2+c1)++(x2a2)(c22x2(x2+a2)+c12a1+c2)f(x)-f(a)=c_{11}x_1^2+c_{22}x_2^2+c_{12}x_1x_2+\\ +c_1x_1+c_2x_2+c-c_{11}a_1^2-c_{22}a_2^2-c_{12}a_1a_2-\\ -c_1a_1-c_2a_2-c=\\ =c_{11}(x_1-a_1)(x_1+a_1)+\\ +c_{22}(x_2-a_2)(x_2+a_2)+\\ +c_{12}(x_1x_2-a_1x_2+a_1x_2-a_1a_2)+\\ +c_1(x_1-a_1)+c_2(x_2-a_2)=\\ =c_{11}(x_1-a_1)(x_1+a_1)+\\ +c_{22}(x_2-a_2)(x_2+a_2)+\\ +c_{12}x_2(x_1-a_1)+c_{12}a_1(x_2-a_2)+\\ +c_1(x_1-a_1)+c_2(x_2-a_2)=\\ =(x_1-a_1)\cdot\\ \cdot(c_{11}(x_1+a_1)+c_{12}x_2+c_1)+\\ +(x_2-a_2)\cdot\\ \cdot(c_{22}x_2(x_2+a_2)+c_{12}a_1+c_2)

Consider

c11(x1+a1)+c12x2+c1==c11x1+c12x2c11a1c12a2==c11(x1a1)+c12(x2a2)c22x2(x2+a2)+c12a1+c2==c22x2c22a2=c22(x2a2)c_{11}(x_1+a_1)+c_{12}x_2+c_1=\\ =c_{11}x_1+c_{12}x_2-c_{11}a_1-c_{12}a_2=\\ =c_{11}(x_1-a_1)+c_{12}(x_2-a_2)\\ c_{22}x_2(x_2+a_2)+c_{12}a_1+c_2=\\ =c_{22}x_2-c_{22}a_2=c_{22}(x_2-a_2)

Then

f(x)f(a)=(x1a1)(c11(x1a1)+c12(x2a2))++(x2a2)c22(x2a2)==c11(x1a1)2++c12(x1a1)(x2a2)++c22(x2a2)2f(x)-f(a)=(x_1-a_1)\cdot\\ \cdot(c_{11}(x_1-a_1)+c_{12}(x_2-a_2))+\\ +(x_2-a_2)\cdot\\ \cdot c_{22}(x_2-a_2)=\\ =c_{11}(x_1-a_1)^2+\\ +c_{12}(x_1-a_1)(x_2-a_2)+\\ + c_{22}(x_2-a_2)^2

There is a homogenous degree two


Consider a polynomial of variables x1,x2,...,xnx_1,x_2,...,x_n

f=i,j=1ncijxixj+i=1ncixi+cf=\sum\limits_{i,j=1}^{n}c_{ij}x_ix_j+\sum\limits_{i=1}^{n}c_ix_i+c

a=(a1,...,an)a=(a_1,...,a_n) - - critical point of ff :

f(a)x1=2c11a1++c12a2+...+c1nan+c1=0...f(a)xn=2cnnan++cn1a1+...+cn,n1an1+cn=0\frac{\partial f(a)}{\partial x_1}=2c_{11}a_1+\\ +c_{12}a_2+...+c_{1n}a_n+c_1=0\\ ...\\ \frac{\partial f(a)}{\partial x_n}=2c_{nn}a_n+\\ +c_{n1}a_1+...+c_{n,n-1}a_{n-1}+c_n=0

f(x)f(a)==i,j=1ncijxixj+i=1ncixi+ci,j=1ncijaiaji=1nciaic==i,j=1ncij(xiai)(xjaj)f(x)-f(a)=\\ =\sum\limits_{i,j=1}^{n}c_{ij}x_ix_j+\sum\limits_{i=1}^{n}c_ix_i+c-\\ -\sum\limits_{i,j=1}^{n}c_{ij}a_ia_j-\sum\limits_{i=1}^{n}c_ia_i-c=\\ =\sum\limits_{i,j=1}^{n}c_{ij}(x_i-a_i)(x_j-a_j)

There is a homogenous degree two




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
11.06.20, 22:55

Dear Henry, a solution of the question has already been published.

Henry
11.06.20, 09:35

Can you please solve the above question as soon as possible?

Leave a comment