Consider a polynomial of two variables x1,x2
f(x1,x2)=c11x12+c22x22+c12x1x2++c1x1+c2x2+c
a=(a1,a2) - critical point of f :
∂x1∂f(a)=2c11a1+c12a2+c1=0∂x2∂f(a)=2c22a2+c12a1+c2=0
Consider a polynomial
f(x)−f(a)=c11x12+c22x22+c12x1x2++c1x1+c2x2+c−c11a12−c22a22−c12a1a2−−c1a1−c2a2−c==c11(x1−a1)(x1+a1)++c22(x2−a2)(x2+a2)++c12(x1x2−a1x2+a1x2−a1a2)++c1(x1−a1)+c2(x2−a2)==c11(x1−a1)(x1+a1)++c22(x2−a2)(x2+a2)++c12x2(x1−a1)+c12a1(x2−a2)++c1(x1−a1)+c2(x2−a2)==(x1−a1)⋅⋅(c11(x1+a1)+c12x2+c1)++(x2−a2)⋅⋅(c22x2(x2+a2)+c12a1+c2)
Consider
c11(x1+a1)+c12x2+c1==c11x1+c12x2−c11a1−c12a2==c11(x1−a1)+c12(x2−a2)c22x2(x2+a2)+c12a1+c2==c22x2−c22a2=c22(x2−a2)
Then
f(x)−f(a)=(x1−a1)⋅⋅(c11(x1−a1)+c12(x2−a2))++(x2−a2)⋅⋅c22(x2−a2)==c11(x1−a1)2++c12(x1−a1)(x2−a2)++c22(x2−a2)2
There is a homogenous degree two
Consider a polynomial of variables x1,x2,...,xn
f=i,j=1∑ncijxixj+i=1∑ncixi+c
a=(a1,...,an) - - critical point of f :
∂x1∂f(a)=2c11a1++c12a2+...+c1nan+c1=0...∂xn∂f(a)=2cnnan++cn1a1+...+cn,n−1an−1+cn=0
f(x)−f(a)==i,j=1∑ncijxixj+i=1∑ncixi+c−−i,j=1∑ncijaiaj−i=1∑nciai−c==i,j=1∑ncij(xi−ai)(xj−aj)
There is a homogenous degree two
Comments
Dear Henry, a solution of the question has already been published.
Can you please solve the above question as soon as possible?
Leave a comment