Consider a polynomial of two variables "x_1, x_2"
"f(x_1,x_2)=c_{11}x_1^2+c_{22}x_2^2+c_{12}x_1x_2+\\\\\n+c_1x_1+c_2x_2+c"
"a=(a_1,a_2)" - critical point of "f" :
"\\frac{\\partial f(a)}{\\partial x_1}=2c_{11}a_1+c_{12}a_2+c_1=0\\\\\n\\frac{\\partial f(a)}{\\partial x_2}=2c_{22}a_2+c_{12}a_1+c_2=0"
Consider a polynomial
"f(x)-f(a)=c_{11}x_1^2+c_{22}x_2^2+c_{12}x_1x_2+\\\\\n+c_1x_1+c_2x_2+c-c_{11}a_1^2-c_{22}a_2^2-c_{12}a_1a_2-\\\\\n-c_1a_1-c_2a_2-c=\\\\\n=c_{11}(x_1-a_1)(x_1+a_1)+\\\\\n+c_{22}(x_2-a_2)(x_2+a_2)+\\\\\n+c_{12}(x_1x_2-a_1x_2+a_1x_2-a_1a_2)+\\\\\n+c_1(x_1-a_1)+c_2(x_2-a_2)=\\\\\n=c_{11}(x_1-a_1)(x_1+a_1)+\\\\\n+c_{22}(x_2-a_2)(x_2+a_2)+\\\\\n+c_{12}x_2(x_1-a_1)+c_{12}a_1(x_2-a_2)+\\\\\n+c_1(x_1-a_1)+c_2(x_2-a_2)=\\\\\n=(x_1-a_1)\\cdot\\\\\n\\cdot(c_{11}(x_1+a_1)+c_{12}x_2+c_1)+\\\\\n+(x_2-a_2)\\cdot\\\\\n\\cdot(c_{22}x_2(x_2+a_2)+c_{12}a_1+c_2)"
Consider
"c_{11}(x_1+a_1)+c_{12}x_2+c_1=\\\\\n=c_{11}x_1+c_{12}x_2-c_{11}a_1-c_{12}a_2=\\\\\n=c_{11}(x_1-a_1)+c_{12}(x_2-a_2)\\\\\nc_{22}x_2(x_2+a_2)+c_{12}a_1+c_2=\\\\\n=c_{22}x_2-c_{22}a_2=c_{22}(x_2-a_2)"
Then
"f(x)-f(a)=(x_1-a_1)\\cdot\\\\\n\\cdot(c_{11}(x_1-a_1)+c_{12}(x_2-a_2))+\\\\\n+(x_2-a_2)\\cdot\\\\\n\\cdot c_{22}(x_2-a_2)=\\\\\n=c_{11}(x_1-a_1)^2+\\\\\n+c_{12}(x_1-a_1)(x_2-a_2)+\\\\\n+ c_{22}(x_2-a_2)^2"
There is a homogenous degree two
Consider a polynomial of variables "x_1,x_2,...,x_n"
"f=\\sum\\limits_{i,j=1}^{n}c_{ij}x_ix_j+\\sum\\limits_{i=1}^{n}c_ix_i+c"
"a=(a_1,...,a_n)" - - critical point of "f" :
"\\frac{\\partial f(a)}{\\partial x_1}=2c_{11}a_1+\\\\\n+c_{12}a_2+...+c_{1n}a_n+c_1=0\\\\\n...\\\\\n\\frac{\\partial f(a)}{\\partial x_n}=2c_{nn}a_n+\\\\\n+c_{n1}a_1+...+c_{n,n-1}a_{n-1}+c_n=0"
"f(x)-f(a)=\\\\\n=\\sum\\limits_{i,j=1}^{n}c_{ij}x_ix_j+\\sum\\limits_{i=1}^{n}c_ix_i+c-\\\\\n-\\sum\\limits_{i,j=1}^{n}c_{ij}a_ia_j-\\sum\\limits_{i=1}^{n}c_ia_i-c=\\\\\n=\\sum\\limits_{i,j=1}^{n}c_{ij}(x_i-a_i)(x_j-a_j)"
There is a homogenous degree two
Comments
Dear Henry, a solution of the question has already been published.
Can you please solve the above question as soon as possible?
Leave a comment