Given P={a2t²+a1t+a0∣a2+a1=a0 and a2,a1,a0∈R} .
(i) Closure: Let A∈P,B∈P , so A=a2t²+a1t+a0,B=a2′t²+a1′t+a0′
and a2+a1=a0,a2′+a1′=a0′ .
So, (a2+a2′)+(a1+a1′)=a0+a0′ and A+B∈P . Hence, Closure property holds.
(ii) Also, (A+B)+C=A+(B+C) ∀ A,B,C∈P .
Hence, Associativity property holds,
(iii) Identity: ∃ 0∈P:0+A=A for all A∈P . Hence, 0 is identity exists in P.
(iv) Inverse: ∀ A∈P , ∃ B=−A∈P:A+B=0 .
Hence, the set P is group under addition.
Comments
Leave a comment