Answer to Question #123753 in Abstract Algebra for Nii Laryea

Question #123753
Show that the set P = {a₂t² + a₁t + a₀ |a₂+ a₁ = a₀ and a₂, a₁, a₀ ϵ R} is a group under addition
1
Expert's answer
2020-06-24T19:22:29-0400

Given P={a2t²+a1t+a0a2+a1=a0 and a2,a1,a0R}P = \{a_2 t² + a_1 t + a_0 | a_2+ a_1 = a_0 \ and \ a_2, a_1, a_0 \in \R\} .

(i) Closure: Let AP,BPA\in P, B \in P , so A=a2t²+a1t+a0,B=a2t²+a1t+a0A = a_2 t² + a_1 t + a_0 , B = a_2' t² + a_1' t + a_0'

and a2+a1=a0,a2+a1=a0a_2+a_1=a_0, a_2'+a_1'=a_0' .

So, (a2+a2)+(a1+a1)=a0+a0(a_2+a_2')+(a_1+a_1') = a_0 +a_0' and A+BPA+B \in P . Hence, Closure property holds.

(ii) Also, (A+B)+C=A+(B+C)  A,B,CP(A+B)+C=A+(B+C) \ \forall \ A,B,C \in P .

Hence, Associativity property holds,

(iii) Identity:  0P:0+A=A\exists \ 0\in P : 0+A = A for all APA \in P . Hence, 0 is identity exists in P.

(iv) Inverse:  AP\forall \ A\in P ,  B=AP:A+B=0\exist \ B=-A\in P : A+B=0 .

Hence, the set P is group under addition.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment