Given "P = \\{a_2 t\u00b2 + a_1 t + a_0 | a_2+ a_1 = a_0 \\ and \\ a_2, a_1, a_0 \\in \\R\\}" .
(i) Closure: Let "A\\in P, B \\in P" , so "A = a_2 t\u00b2 + a_1 t + a_0 , B = a_2' t\u00b2 + a_1' t + a_0'"
and "a_2+a_1=a_0, a_2'+a_1'=a_0'" .
So, "(a_2+a_2')+(a_1+a_1') = a_0 +a_0'" and "A+B \\in P" . Hence, Closure property holds.
(ii) Also, "(A+B)+C=A+(B+C) \\ \\forall \\ A,B,C \\in P" .
Hence, Associativity property holds,
(iii) Identity: "\\exists \\ 0\\in P : 0+A = A" for all "A \\in P" . Hence, 0 is identity exists in P.
(iv) Inverse: "\\forall \\ A\\in P" , "\\exist \\ B=-A\\in P : A+B=0" .
Hence, the set P is group under addition.
Comments
Leave a comment