Answer to Question #122425 in Abstract Algebra for Saleem

Question #122425
Compute the center of GL(3.F) Also find order of GL(3,3)
1
Expert's answer
2020-06-16T16:35:59-0400

GL(3,F)=={A=(a11a12a13a21a22a23a31a32a33),aijF,detA=1}GL(3,F)=\\=\left\{A=\begin{pmatrix} a_{11} & a_{12}&a_{13} \\ a_{21} & a_{22}&a_{23} \\ a_{31} & a_{32}&a_{33} \\ \end{pmatrix}, a_{ij}\in F, detA=1\right\}

The center is

Z={zGL(3,F):AGL(3,F):zA=Az}z=(b11b12b13b21b22b23b31b32b33)zA=(b11b12b13b21b22b23b31b32b33)(a11a12a13a21a22a23a31a32a33)Az=(a11a12a13a21a22a23a31a32a33)(b11b12b13b21b22b23b31b32b33)Z=\left\{z\in GL(3,F):\forall A\in GL(3,F):zA=Az\right\}\\ z=\begin{pmatrix} b_{11} & b_{12}&b_{13} \\ b_{21} & b_{22}&b_{23} \\ b_{31} & b_{32}&b_{33} \\ \end{pmatrix}\\ zA=\begin{pmatrix} b_{11} & b_{12}&b_{13} \\ b_{21} & b_{22}&b_{23} \\ b_{31} & b_{32}&b_{33} \\ \end{pmatrix}\cdot\begin{pmatrix} a_{11} & a_{12}&a_{13} \\ a_{21} & a_{22}&a_{23} \\ a_{31} & a_{32}&a_{33} \\ \end{pmatrix}\\ Az=\begin{pmatrix} a_{11} & a_{12}&a_{13} \\ a_{21} & a_{22}&a_{23} \\ a_{31} & a_{32}&a_{33} \\ \end{pmatrix}\cdot \begin{pmatrix} b_{11} & b_{12}&b_{13} \\ b_{21} & b_{22}&b_{23} \\ b_{31} & b_{32}&b_{33} \\ \end{pmatrix}

We get the system

a21b12+a31b13=a12b21+a13b31a11b21+a21b22+a31b23=a21b11+a22b21+a23b31a11b31+a21b32+a31b33=a31b11+a32b21+a33b31a12b11+a22b12+a32b13=a11b12+a12b22+a13b32a12b21+a32b23=a21b12+a23b32a12b31+a22b32+a32b33=a31b12+a32b22+a33b32a13b11+a23b12+a33b13=a11b13+a12b23+a13b33a13b21+a23b22+a33b23=a21b13+a22b23+a23b33a13b31+a23b32=a31b13+a32b23a_{21}b_{12}+a_{31}b_{13}=a_{12}b_{21}+a_{13}b_{31}\\ a_{11}b_{21}+a_{21}b_{22}+a_{31}b_{23}=a_{21}b_{11}+a_{22}b_{21}+a_{23}b_{31}\\ a_{11}b_{31}+a_{21}b_{32}+a_{31}b_{33}=a_{31}b_{11}+a_{32}b_{21}+a_{33}b_{31}\\ a_{12}b_{11}+a_{22}b_{12}+a_{32}b_{13}=a_{11}b_{12}+a_{12}b_{22}+a_{13}b_{32}\\ a_{12}b_{21}+a_{32}b_{23}=a_{21}b_{12}+a_{23}b_{32}\\ a_{12}b_{31}+a_{22}b_{32}+a_{32}b_{33}=a_{31}b_{12}+a_{32}b_{22}+a_{33}b_{32}\\ a_{13}b_{11}+a_{23}b_{12}+a_{33}b_{13}=a_{11}b_{13}+a_{12}b_{23}+a_{13}b_{33}\\ a_{13}b_{21}+a_{23}b_{22}+a_{33}b_{23}=a_{21}b_{13}+a_{22}b_{23}+a_{23}b_{33}\\ a_{13}b_{31}+a_{23}b_{32}=a_{31}b_{13}+a_{32}b_{23}

Since detA0detA\neq0 , the system has solutions if

a110,a220,a330,aij=0,ija_{11}\neq0, a_{22}\neq0, a_{33}\neq0, a_{ij}=0, i\neq j

z=(a11000a22000a33)z=\begin{pmatrix} a_{11} &0&0 \\ 0 &a_{22}&0\\ 0&0&a_{33} \end{pmatrix}

Order GL(3,Z3)GL(3,Z_3)

(pnpn1)(pnpn2)(pnpn3)...==(3332)(333)(331)=182426=11232(p^n-p^{n-1})(p^n-p^{n-2})(p^n-p^{n-3})...=\\ =(3^3-3^2)(3^3-3)(3^3-1)=18\cdot24\cdot26=11232




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment