Question #105182
Consider the ideal I<x³-1,2x⁴+2x³+7x²+5x+5> in Q[x]. Find p(x) ∈Q[x] such that I =<p(x)> . Is Q[x]/I a field? Give reasons for your answer.
1
Expert's answer
2020-03-12T12:24:14-0400

p(x)=(x31,2x4+2x3+7x2+5x+5)p(x)=(x^3-1,2x^4+2x^3+7x^2+5x+5)  is the greatest common divisor of x31x^3-1 and 2x4+2x3+7x2+5x+52x^4+2x^3+7x^2+5x+5 .

Find p(x)p(x) :

2x4+2x3+7x2+5x+5:x312x^4+2x^3+7x^2+5x+5:x^3-1


2x4+2x3+7x2+5x+5x312x42x2x+22x3+7x2+5x+52x327x2+7x+7x2+x+1\begin{matrix} 2x^4+2x^3+7x^2+5x+5 &&&& |x^3-1 \\ 2x^4-2x &&&& 2x+2\\ &&2x^3+7x^2+5x+5\\ &&2x^3-2&\\ &&&7x^2+7x+7\\ &&&x^2+x+1 \end{matrix}


x31:x2+x+1x^3-1:x^2+x+1


x31x2+x+1x3+x2+xx1x2x1x2x10\begin{matrix} x^3-1 &&& |x^2+x+1 \\ x^3+x^2+x &&&x-1 \\ & -x^2-x-1\\ &-x^2-x-1\\ &&0 \end{matrix}

Then p(x)=x2+x+1p(x)=x^2+x+1 .


Then

Q[x]/p(x)=Q[x]/<x2+x+1>==Q[x]/Q[x]={0}Q[x]/p(x)=Q[x] /<x^2+x+1>=\\ =Q[x]/Q[x]=\{0\}

It is not a field, because there x2+x+1=0x^2+x+1=0


Answer: p(x)=x2+x+1p(x)=x^2+x+1, Q[x]/IQ[x]/I is not a field


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS