p(x)=(x3−1,2x4+2x3+7x2+5x+5) is the greatest common divisor of x3−1 and 2x4+2x3+7x2+5x+5 .
Find p(x) :
2x4+2x3+7x2+5x+5:x3−1
2x4+2x3+7x2+5x+52x4−2x2x3+7x2+5x+52x3−27x2+7x+7x2+x+1∣x3−12x+2
x3−1:x2+x+1
x3−1x3+x2+x−x2−x−1−x2−x−10∣x2+x+1x−1
Then p(x)=x2+x+1 .
Then
Q[x]/p(x)=Q[x]/<x2+x+1>==Q[x]/Q[x]={0}
It is not a field, because there x2+x+1=0
Answer: p(x)=x2+x+1, Q[x]/I is not a field
Comments