"S" "=" { "a_0+a_1x+.......+a_nx^n" "\\in Z[x]: 5|a_0" }
According to ideal test ,
Let "f(x)=a_0+a_1x+.....+a_nx^n,g(x)=b_0+b_1x+.........+b_mx^m"
are two elements of S and "r(x) = c_0+c_1x+........+c_lx^l\\in Z[x]"
Then "f(x)-g(x)\\in S" ,Since "5|a_0 \\space and \\space 5|b_0\\implies 5|a_0-b_0"
and "r(x)f(x)\\in S" , Since "5|a_0\\implies 5|a_0c_0"
Similarly,"f(x)r(x)\\in S."
Hence ,S is an ideal of "Z[x]"
Comments
Leave a comment