Answer to Question #105101 in Abstract Algebra for Sourav Mondal

Question #105101
Check whether or not S={a0+a1x+.......+anx^n belongs to Z[x]|5|a0}is an ideal of Z[x]
1
Expert's answer
2020-03-13T09:55:53-0400

SS == { a0+a1x+.......+anxna_0+a_1x+.......+a_nx^n Z[x]:5a0\in Z[x]: 5|a_0 }

According to ideal test ,

Let f(x)=a0+a1x+.....+anxn,g(x)=b0+b1x+.........+bmxmf(x)=a_0+a_1x+.....+a_nx^n,g(x)=b_0+b_1x+.........+b_mx^m

are two elements of S and r(x)=c0+c1x+........+clxlZ[x]r(x) = c_0+c_1x+........+c_lx^l\in Z[x]

Then f(x)g(x)Sf(x)-g(x)\in S ,Since 5a0 and 5b0    5a0b05|a_0 \space and \space 5|b_0\implies 5|a_0-b_0

and r(x)f(x)Sr(x)f(x)\in S , Since 5a0    5a0c05|a_0\implies 5|a_0c_0

Similarly,f(x)r(x)S.f(x)r(x)\in S.

Hence ,S is an ideal of Z[x]Z[x]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment