Consider the mapping "f\\colon\\mathbb R^5\\to\\mathbb R^4", where "f(a,b,c,d,e)=(a,b,c,d)". It is a ring homomorpism, because "f((a_1,b_1,c_1,d_1,e_1)+(a_1,b_1,c_1,d_1,e_1))="
"=f(a_1+a_2,b_1+b_2,c_1+c_2,d_1+d_2,e_1+e_2)="
"=(a_1+a_2,b_1+b_2,c_1+c_2,d_1+d_2)="
"=(a_1,b_1,c_1,d_1)+(a_2,b_2,c_2,d_2)="
"=f(a_1,b_1,c_1,d_1,e_1)+(a_2,b_2,c_2,d_2,e_2)" and
"f((a_1,b_1,c_1,d_1,e_1)\\cdot(a_1,b_1,c_1,d_1,e_1))="
"=f(a_1a_2,b_1b_2,c_1c_2,d_1d_2,e_1e_2)="
"=(a_1a_2,b_1b_2,c_1c_2,d_1d_2)="
"=(a_1,b_1,c_1,d_1)\\cdot(a_2,b_2,c_2,d_2)="
"=f(a_1,b_1,c_1,d_1,e_1)\\cdot(a_2,b_2,c_2,d_2,e_2)"
So "\\mathbb R^5\/\\ker f\\approx Im f"
"Im f=\\mathbb R^4" , because for every "(a,b,c,d)\\in\\mathbb R^4" we have "(a,b,c,d)=f(a,b,c,d,0)" .
Find "\\ker f" : if "(a,b,c,d,e)\\in\\ker f", then "(0,0,0,0)=f(a,b,c,d,e)=(a,b,c,d)" , that is "a=b=c=d=0" , so "\\ker f=\\{0\\}^4\\times\\mathbb R\\approx\\mathbb R"
We obtain "\\mathbb R^5\/\\mathbb R\\approx\\mathbb R^4"
Comments
Leave a comment