Consider the mapping f:R5→R4, where f(a,b,c,d,e)=(a,b,c,d). It is a ring homomorpism, because f((a1,b1,c1,d1,e1)+(a1,b1,c1,d1,e1))=
=f(a1+a2,b1+b2,c1+c2,d1+d2,e1+e2)=
=(a1+a2,b1+b2,c1+c2,d1+d2)=
=(a1,b1,c1,d1)+(a2,b2,c2,d2)=
=f(a1,b1,c1,d1,e1)+(a2,b2,c2,d2,e2) and
f((a1,b1,c1,d1,e1)⋅(a1,b1,c1,d1,e1))=
=f(a1a2,b1b2,c1c2,d1d2,e1e2)=
=(a1a2,b1b2,c1c2,d1d2)=
=(a1,b1,c1,d1)⋅(a2,b2,c2,d2)=
=f(a1,b1,c1,d1,e1)⋅(a2,b2,c2,d2,e2)
So R5/kerf≈Imf
Imf=R4 , because for every (a,b,c,d)∈R4 we have (a,b,c,d)=f(a,b,c,d,0) .
Find kerf : if (a,b,c,d,e)∈kerf, then (0,0,0,0)=f(a,b,c,d,e)=(a,b,c,d) , that is a=b=c=d=0 , so kerf={0}4×R≈R
We obtain R5/R≈R4
Comments
Leave a comment