Answer to Question #104926 in Abstract Algebra for Sourav Mondal

Question #104926
Prove that R^5/R=R⁴ as rings.
1
Expert's answer
2020-03-12T12:00:03-0400

Consider the mapping f ⁣:R5R4f\colon\mathbb R^5\to\mathbb R^4, where f(a,b,c,d,e)=(a,b,c,d)f(a,b,c,d,e)=(a,b,c,d). It is a ring homomorpism, because f((a1,b1,c1,d1,e1)+(a1,b1,c1,d1,e1))=f((a_1,b_1,c_1,d_1,e_1)+(a_1,b_1,c_1,d_1,e_1))=

=f(a1+a2,b1+b2,c1+c2,d1+d2,e1+e2)==f(a_1+a_2,b_1+b_2,c_1+c_2,d_1+d_2,e_1+e_2)=

=(a1+a2,b1+b2,c1+c2,d1+d2)==(a_1+a_2,b_1+b_2,c_1+c_2,d_1+d_2)=

=(a1,b1,c1,d1)+(a2,b2,c2,d2)==(a_1,b_1,c_1,d_1)+(a_2,b_2,c_2,d_2)=

=f(a1,b1,c1,d1,e1)+(a2,b2,c2,d2,e2)=f(a_1,b_1,c_1,d_1,e_1)+(a_2,b_2,c_2,d_2,e_2) and

f((a1,b1,c1,d1,e1)(a1,b1,c1,d1,e1))=f((a_1,b_1,c_1,d_1,e_1)\cdot(a_1,b_1,c_1,d_1,e_1))=

=f(a1a2,b1b2,c1c2,d1d2,e1e2)==f(a_1a_2,b_1b_2,c_1c_2,d_1d_2,e_1e_2)=

=(a1a2,b1b2,c1c2,d1d2)==(a_1a_2,b_1b_2,c_1c_2,d_1d_2)=

=(a1,b1,c1,d1)(a2,b2,c2,d2)==(a_1,b_1,c_1,d_1)\cdot(a_2,b_2,c_2,d_2)=

=f(a1,b1,c1,d1,e1)(a2,b2,c2,d2,e2)=f(a_1,b_1,c_1,d_1,e_1)\cdot(a_2,b_2,c_2,d_2,e_2)

So R5/kerfImf\mathbb R^5/\ker f\approx Im f

Imf=R4Im f=\mathbb R^4 , because for every (a,b,c,d)R4(a,b,c,d)\in\mathbb R^4 we have (a,b,c,d)=f(a,b,c,d,0)(a,b,c,d)=f(a,b,c,d,0) .

Find kerf\ker f : if (a,b,c,d,e)kerf(a,b,c,d,e)\in\ker f, then (0,0,0,0)=f(a,b,c,d,e)=(a,b,c,d)(0,0,0,0)=f(a,b,c,d,e)=(a,b,c,d) , that is a=b=c=d=0a=b=c=d=0 , so kerf={0}4×RR\ker f=\{0\}^4\times\mathbb R\approx\mathbb R

We obtain R5/RR4\mathbb R^5/\mathbb R\approx\mathbb R^4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment