Question #104439
Show that Z[√-2] is not a UFD.
1
Expert's answer
2020-03-03T16:51:22-0500

Actually, Z[2]\mathbb{Z}[\sqrt{-2}] is UFD.

Proof:

We will prove that Z[2]\mathbb{Z}[\sqrt{-2}] is Euclidean domain. It will be enough because every Euclidean domain is a unique factorization domain.

If there exists a Euclidean norm on Z[2]\mathbb{Z}[\sqrt{-2}] , then the integral domain Z[2]\mathbb{Z}[\sqrt{-2}] is a Euclidean domain. (definition)

So, we will prove, that in the integral domain Z[2]\mathbb{Z}[\sqrt{-2}] , the function N(α)=ααN(\alpha)=\alpha \overline{\alpha} is a multiplicative Euclidean norm.

(i) rZ[2]/{0}:N(r)0\forall r\in \mathbb{Z}[\sqrt{-2}] /\{0\} : N(r)\geq0

N(a+b2)=(a+b2)(ab2)=a2+2b20N(a+b\sqrt{-2})=(a+b\sqrt{-2})(a-b\sqrt{-2})=a^2+2b^2\geq 0


(ii) a,bZ[2],b=0, r,qZ[2]:a=bq+r (r=0\forall a,b\in \mathbb{Z}[\sqrt{-2}] , b \cancel{=}0, \ \exists r,q\in \mathbb{Z}[\sqrt{-2}] : a=bq+r \ (r=0 or N(r)<N(b))N(r)<N(b))

Let a+b2, c+d2Z[2],a,b,c,dZ.a+b\sqrt{-2}, \ c+d\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}] , \quad a,b,c,d\in \mathbb{Z}.

e,fQ:a+b2c+d2=(ac+2bd)+(bcad)2c2+2d2=e+f2\exists e,f\in \mathbb{Q}: \quad \frac{a+b\sqrt{-2}}{c+d\sqrt{-2}}=\frac{(ac+2bd)+(bc-ad)\sqrt{-2}}{c^2+2d^2}=e+f\sqrt{-2}

Consider r,sZ: er1/2,fs1/2r,s\in \mathbb{Z}: \ |e-r|\leq1/2, |f-s|\leq1/2

Then a+b2=(c+d2)(e+f2)=a+b\sqrt{-2}=(c+d\sqrt{-2})(e+f\sqrt{-2})=

=(c+d2)(r+s2+(er)+(fs)2)==(c+d\sqrt{-2})(r+s\sqrt{-2}+(e-r)+(f-s)\sqrt{-2})=

=(c+d2)(r+s2)+(c+d2)((er)+(fs)2)=(c+d\sqrt{-2})(r+s\sqrt{-2})+(c+d\sqrt{-2})((e-r)+(f-s)\sqrt{-2})

We need to check that N(c+d2)>N((c+d2)((er)+(fs)2)N(c+d\sqrt{-2})>N((c+d\sqrt{-2})((e-r)+(f-s)\sqrt{-2}) .

N((c+d2)((er)+(fs)2))=N(c+d2)N((er)+(fs)2)N(c+d2)(1/4+2×1/4)=3/4N(c+d2)<N(c+d2)N((c+d\sqrt{-2})((e-r)+(f-s)\sqrt{-2}))= N(c+d\sqrt{-2})N((e-r)+(f-s)\sqrt{-2})\leq N(c+d\sqrt{-2})(1/4+2\times 1/4)=3/4 N(c+d\sqrt{-2})< N(c+d\sqrt{-2})



Therefore, NN is Euclidean norm \Rightarrow Z[2]\mathbb{Z}[\sqrt{-2}] is Euclidean domain \Rightarrow Z[2]\mathbb{Z}[\sqrt{-2}] is UFD.



This material can be found here: https://math.stanford.edu/~ksound/Math152A10/Solution6.pdf



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS