Actually, Z[−2] is UFD.
Proof:
We will prove that Z[−2] is Euclidean domain. It will be enough because every Euclidean domain is a unique factorization domain.
If there exists a Euclidean norm on Z[−2] , then the integral domain Z[−2] is a Euclidean domain. (definition)
So, we will prove, that in the integral domain Z[−2] , the function N(α)=αα is a multiplicative Euclidean norm.
(i) ∀r∈Z[−2]/{0}:N(r)≥0
N(a+b−2)=(a+b−2)(a−b−2)=a2+2b2≥0
(ii) ∀a,b∈Z[−2],b=0, ∃r,q∈Z[−2]:a=bq+r (r=0 or N(r)<N(b))
Let a+b−2, c+d−2∈Z[−2],a,b,c,d∈Z.
∃e,f∈Q:c+d−2a+b−2=c2+2d2(ac+2bd)+(bc−ad)−2=e+f−2
Consider r,s∈Z: ∣e−r∣≤1/2,∣f−s∣≤1/2
Then a+b−2=(c+d−2)(e+f−2)=
=(c+d−2)(r+s−2+(e−r)+(f−s)−2)=
=(c+d−2)(r+s−2)+(c+d−2)((e−r)+(f−s)−2)
We need to check that N(c+d−2)>N((c+d−2)((e−r)+(f−s)−2) .
N((c+d−2)((e−r)+(f−s)−2))=N(c+d−2)N((e−r)+(f−s)−2)≤N(c+d−2)(1/4+2×1/4)=3/4N(c+d−2)<N(c+d−2)
Therefore, N is Euclidean norm ⇒ Z[−2] is Euclidean domain ⇒ Z[−2] is UFD.
This material can be found here: https://math.stanford.edu/~ksound/Math152A10/Solution6.pdf
Comments