Question #104949
Consider the ideal I<x³-1.x⁴+2x³+7x²+5x+5> in Q[x]. Find p(x) ∈Q[x] such that I =<p(x)> .
Is Q[x]/I a field? Give reasons for your answer.
1
Expert's answer
2020-03-10T13:20:16-0400

p(x)=(x31,x4+2x3+7x2+5x+5)p(x)=(x^3-1,x^4+2x^3+7x^2+5x+5) is the greatest common divisor of x31x^3-1 and x4+2x3+7x2+5x+5x^4+2x^3+7x^2+5x+5, because there are polynomials P(x)P(x) and Q(x)Q(x) such that (x31,x4+2x3+7x2+5x+5)=P(x)(x31)+(x^3-1,x^4+2x^3+7x^2+5x+5)=P(x)(x^3-1)+

+Q(x)(x4+2x3+7x2+5x+5)+Q(x)(x^4+2x^3+7x^2+5x+5), so (x31,x4+2x3+7x2+5x+5)\langle(x^3-1,x^4+2x^3+7x^2+5x+5)\rangle\subset x31,x4+2x3+7x2+5x+5\subset\langle x^3-1,x^4+2x^3+7x^2+5x+5\rangle . But x31x^3-1 and x4+2x3+7x2+5x+5x^4+2x^3+7x^2+5x+5 are divisible by (x31,x4+2x3+7x2+5x+5)\langle(x^3-1,x^4+2x^3+7x^2+5x+5)\rangle, so x31,x4+2x3+7x2+5x+5\langle x^3-1,x^4+2x^3+7x^2+5x+5\rangle\subset

(x31,x4+2x3+7x2+5x+5)\subset\langle(x^3-1,x^4+2x^3+7x^2+5x+5)\rangle , so x31,x4+2x3+7x2+5x+5=\langle x^3-1,x^4+2x^3+7x^2+5x+5\rangle=

=(x31,x4+2x3+7x2+5x+5)=\langle(x^3-1,x^4+2x^3+7x^2+5x+5)\rangle .


We have x31=(x1)(x2+x+1)x^3-1=(x-1)(x^2+x+1), where x1x-1 and x2+x+1x^2+x+1 are irreducible polynomials in Q[x]\mathbb Q[x]. So we need to check if x4+2x3+7x2+5x+5x^4+2x^3+7x^2+5x+5 divisible by x1x-1 or x2+x+1x^2+x+1


11 is not a solution of x4+2x3+7x2+5x+5=0x^4+2x^3+7x^2+5x+5=0, so x4+2x3+7x2+5x+5x^4+2x^3+7x^2+5x+5 is not divisible byx1x-1.


x4+2x3+7x2+5x+5x^4+2x^3+7x^2+5x+5 also is not divisible by x2+x+1x^2+x+1, because x4+2x3+7x2+5x+5=(x2+x+1)(x2+x+5)+xx^4+2x^3+7x^2+5x+5=(x^2+x+1)(x^2+x+5)+x


So p(x)=(x31,x4+2x3+7x2+5x+5)=1p(x)=(x^3-1,x^4+2x^3+7x^2+5x+5)=1


Then Q[x]/1=Q[x]/Q[x]={0}\mathbb Q[x]/\langle1\rangle=\mathbb Q[x]/\mathbb Q[x]=\{0\} . It is not a field, because there 1=01=0 .


Answer: p(x)=1p(x)=1 , Q[x]/I\mathbb Q[x]/I is not a field.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS