24. Solve recurrence relation an+1-5+2an for n20 given a01.
Solve recurrence relation an+1-5+2an for n20 given a01.
Dividing by a suitable function for step 2 to work
an 2 n = an−1 2 n−1 + 1 2 n .
sn = sn−1 + . . . .
sn = sn−1 + 1 2 n where sn = an 2 n .
an = 2n sn = 2n − 1.
Check that an=2n+1an=2n+1 is the solution to the recurrence relation an=2an−1−1an=2an−1−1 with a1=3.
3
Comments
Leave a comment