Question #262288

At a point in an elastic material there are two mutually perpendicular planes, one of which carries a direct tensile stress at 50 N/mm2 and a shear stress of 40 N/mm2, while the other plane is subjected to a direct compressive stress of 35 N/mm2 and a complementary shear stress of 40 N/mm2.

Determine the principal stresses at the point, the position of the planes on which they act and the position of the planes on which there is no normal stress.


1
Expert's answer
2021-11-08T08:49:34-0500

σ1,2=σx+σy2±σxσy2+τxy2\sigma_{1,2}=\frac{\sigma_x+\sigma_y}{2}\pm\sqrt{\frac{\sigma_x-\sigma_y}{2}+{\tau_{xy}}^2}

σ1,2=50+(35)2±50(35)2+402\sigma_{1,2}=\frac{50+(-35)}{2}\pm\sqrt{\frac{50-(-35)}{2}+{40}^2}

σ1,2=50352±852+402\sigma_{1,2}=\frac{50-35}{2}\pm\sqrt{\frac{85}{2}+{40}^2}

σ1,2=7.5±58.363\sigma_{1,2}=7.5\pm 58.363

σ1=65.863MPa\therefore \sigma_1=65.863MPa

σ2=50.863MPa\sigma_2=-50.863MPa

Tan 2θp=2τxyσxσyTan\ 2\theta p=\frac{2\tau_{xy}}{\sigma_x-\sigma_y}

2θp=Tan12τxyσxσy2\theta p=Tan^{-1}\frac{2\tau_{xy}}{\sigma_x-\sigma_y}

θp=12Tan12τxyσxσy\theta p=\frac{1}{2}Tan^{-1}\frac{2\tau_{xy}}{\sigma_x-\sigma_y}

θp=12Tan124050(35)\theta p=\frac{1}{2}Tan^{-1}\frac{2*40}{50-(-35)}

θp=12Tan18085\theta p=\frac{1}{2}Tan^{-1}\frac{80}{85}

=21.263° Which is position of principal plane

θs=θp+45\theta_s=\theta_p+45

=21.263+45

=66.263° which is the position of shear plane


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS