(x-2y)dx-(x-2y+1)dy=0
(x-2y)dx=(x-2y+1)dy
dxdy=x−2y+1x−2y This is equation (i)
Let x-2y=u ⟹1−2dxdy=dxdu
1−dxdu=2dxdy
dxdy=21−21dxdu This is equation (ii)
Substituting equation (ii) into equation(i) we get,
21−21dxdu=u+1u
1−dxdu=2u+22u
dxdu=1−2u+22u
dxdu=2u+22u+2−2u=2u+22
(2u+2)du=2dx
Integrate both sides∫(2u+2)du=2∫1dx
u2+2u=2x+C
(x−2y)2+2(x−2y)=2x+C
x2−4xy+4y2+2x−4y=2x+C
4y2−(4x+4)y+(x2+C)=0
y=8(4x+4)±(−4x−4)2−16(x2+C
y=84(x+1)±16x2+32x+16−16x2−16C
y=84(x+1)±32x+16−16C
y=84(x+1)±42x+1−C
y=2(x+1)±2x+1−C
The general solution of the DE is;
y=2(x+1)±2x+1−C
Comments