Question #242798

find the general solution of the given DE (x - 2y)dx - (x - 2y + 1)dy = 0


1
Expert's answer
2021-09-28T00:57:51-0400

(x-2y)dx-(x-2y+1)dy=0

(x-2y)dx=(x-2y+1)dy

dydx=x2yx2y+1\frac{dy}{dx}=\frac{x-2y}{x-2y+1} This is equation (i)

Let x-2y=u     12dydx=dudx\implies1-2\frac{dy}{dx}=\frac{du}{dx}

1dudx=2dydx1-\frac{du}{dx}=2\frac{dy}{dx}

dydx=1212dudx\frac{dy}{dx}=\frac{1}{2}-\frac{1}{2}\frac{du}{dx} This is equation (ii)

Substituting equation (ii) into equation(i) we get,

1212dudx=uu+1\frac{1}{2}-\frac{1}{2}\frac{du}{dx}=\frac{u}{u+1}

1dudx=2u2u+21-\frac{du}{dx}=\frac{2u}{2u+2}

dudx=12u2u+2\frac{du}{dx}=1-\frac{2u}{2u+2}

dudx=2u+22u2u+2=22u+2\frac{du}{dx}=\frac{2u+2-2u}{2u+2}=\frac{2}{2u+2}

(2u+2)du=2dx(2u+2)du=2dx

Integrate both sides(2u+2)du=21dx\int (2u+2)du=2\int 1dx

u2+2u=2x+Cu^{2}+2u=2x+C

(x2y)2+2(x2y)=2x+C(x-2y)^{2}+2(x-2y)=2x+C

x24xy+4y2+2x4y=2x+Cx^{2}-4xy+4y^{2}+2x-4y=2x+C

4y2(4x+4)y+(x2+C)=04y^{2}-(4x+4)y+(x^{2}+C)=0

y=(4x+4)±(4x4)216(x2+C8y=\frac{(4x+4)\pm \sqrt{(-4x-4)^{2}-16(x^{2}+C}}{8}

y=4(x+1)±16x2+32x+1616x216C8y=\frac{4(x+1)\pm \sqrt{16x^{2}+32x+16-16x^{2}-16C}}{8}

y=4(x+1)±32x+1616C8y=\frac{4(x+1)\pm \sqrt{32x+16-16C}}{8}

y=4(x+1)±42x+1C8y=\frac{4(x+1)\pm 4\sqrt{2x+1-C}}{8}

y=(x+1)±2x+1C2y=\frac{(x+1)\pm \sqrt{2x+1-C}}{2}

The general solution of the DE is;

y=(x+1)±2x+1C2y=\frac{(x+1)\pm \sqrt{2x+1-C}}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS