find the general solution of the given DE (x - 2y)dx - (x - 2y + 1)dy = 0
(x-2y)dx-(x-2y+1)dy=0
(x-2y)dx=(x-2y+1)dy
"\\frac{dy}{dx}=\\frac{x-2y}{x-2y+1}" This is equation (i)
Let x-2y=u "\\implies1-2\\frac{dy}{dx}=\\frac{du}{dx}"
"1-\\frac{du}{dx}=2\\frac{dy}{dx}"
"\\frac{dy}{dx}=\\frac{1}{2}-\\frac{1}{2}\\frac{du}{dx}" This is equation (ii)
Substituting equation (ii) into equation(i) we get,
"\\frac{1}{2}-\\frac{1}{2}\\frac{du}{dx}=\\frac{u}{u+1}"
"1-\\frac{du}{dx}=\\frac{2u}{2u+2}"
"\\frac{du}{dx}=1-\\frac{2u}{2u+2}"
"\\frac{du}{dx}=\\frac{2u+2-2u}{2u+2}=\\frac{2}{2u+2}"
"(2u+2)du=2dx"
Integrate both sides"\\int (2u+2)du=2\\int 1dx"
"u^{2}+2u=2x+C"
"(x-2y)^{2}+2(x-2y)=2x+C"
"x^{2}-4xy+4y^{2}+2x-4y=2x+C"
"4y^{2}-(4x+4)y+(x^{2}+C)=0"
"y=\\frac{(4x+4)\\pm \\sqrt{(-4x-4)^{2}-16(x^{2}+C}}{8}"
"y=\\frac{4(x+1)\\pm \\sqrt{16x^{2}+32x+16-16x^{2}-16C}}{8}"
"y=\\frac{4(x+1)\\pm \\sqrt{32x+16-16C}}{8}"
"y=\\frac{4(x+1)\\pm 4\\sqrt{2x+1-C}}{8}"
"y=\\frac{(x+1)\\pm \\sqrt{2x+1-C}}{2}"
The general solution of the DE is;
"y=\\frac{(x+1)\\pm \\sqrt{2x+1-C}}{2}"
Comments
Leave a comment