(x-2y)dx-(x-2y+1)dy=0
(x-2y)dx=(x-2y+1)dy
d y d x = x − 2 y x − 2 y + 1 \frac{dy}{dx}=\frac{x-2y}{x-2y+1} d x d y = x − 2 y + 1 x − 2 y This is equation (i)
Let x-2y=u ⟹ 1 − 2 d y d x = d u d x \implies1-2\frac{dy}{dx}=\frac{du}{dx} ⟹ 1 − 2 d x d y = d x d u
1 − d u d x = 2 d y d x 1-\frac{du}{dx}=2\frac{dy}{dx} 1 − d x d u = 2 d x d y
d y d x = 1 2 − 1 2 d u d x \frac{dy}{dx}=\frac{1}{2}-\frac{1}{2}\frac{du}{dx} d x d y = 2 1 − 2 1 d x d u This is equation (ii)
Substituting equation (ii) into equation(i) we get,
1 2 − 1 2 d u d x = u u + 1 \frac{1}{2}-\frac{1}{2}\frac{du}{dx}=\frac{u}{u+1} 2 1 − 2 1 d x d u = u + 1 u
1 − d u d x = 2 u 2 u + 2 1-\frac{du}{dx}=\frac{2u}{2u+2} 1 − d x d u = 2 u + 2 2 u
d u d x = 1 − 2 u 2 u + 2 \frac{du}{dx}=1-\frac{2u}{2u+2} d x d u = 1 − 2 u + 2 2 u
d u d x = 2 u + 2 − 2 u 2 u + 2 = 2 2 u + 2 \frac{du}{dx}=\frac{2u+2-2u}{2u+2}=\frac{2}{2u+2} d x d u = 2 u + 2 2 u + 2 − 2 u = 2 u + 2 2
( 2 u + 2 ) d u = 2 d x (2u+2)du=2dx ( 2 u + 2 ) d u = 2 d x
Integrate both sides∫ ( 2 u + 2 ) d u = 2 ∫ 1 d x \int (2u+2)du=2\int 1dx ∫ ( 2 u + 2 ) d u = 2 ∫ 1 d x
u 2 + 2 u = 2 x + C u^{2}+2u=2x+C u 2 + 2 u = 2 x + C
( x − 2 y ) 2 + 2 ( x − 2 y ) = 2 x + C (x-2y)^{2}+2(x-2y)=2x+C ( x − 2 y ) 2 + 2 ( x − 2 y ) = 2 x + C
x 2 − 4 x y + 4 y 2 + 2 x − 4 y = 2 x + C x^{2}-4xy+4y^{2}+2x-4y=2x+C x 2 − 4 x y + 4 y 2 + 2 x − 4 y = 2 x + C
4 y 2 − ( 4 x + 4 ) y + ( x 2 + C ) = 0 4y^{2}-(4x+4)y+(x^{2}+C)=0 4 y 2 − ( 4 x + 4 ) y + ( x 2 + C ) = 0
y = ( 4 x + 4 ) ± ( − 4 x − 4 ) 2 − 16 ( x 2 + C 8 y=\frac{(4x+4)\pm \sqrt{(-4x-4)^{2}-16(x^{2}+C}}{8} y = 8 ( 4 x + 4 ) ± ( − 4 x − 4 ) 2 − 16 ( x 2 + C
y = 4 ( x + 1 ) ± 16 x 2 + 32 x + 16 − 16 x 2 − 16 C 8 y=\frac{4(x+1)\pm \sqrt{16x^{2}+32x+16-16x^{2}-16C}}{8} y = 8 4 ( x + 1 ) ± 16 x 2 + 32 x + 16 − 16 x 2 − 16 C
y = 4 ( x + 1 ) ± 32 x + 16 − 16 C 8 y=\frac{4(x+1)\pm \sqrt{32x+16-16C}}{8} y = 8 4 ( x + 1 ) ± 32 x + 16 − 16 C
y = 4 ( x + 1 ) ± 4 2 x + 1 − C 8 y=\frac{4(x+1)\pm 4\sqrt{2x+1-C}}{8} y = 8 4 ( x + 1 ) ± 4 2 x + 1 − C
y = ( x + 1 ) ± 2 x + 1 − C 2 y=\frac{(x+1)\pm \sqrt{2x+1-C}}{2} y = 2 ( x + 1 ) ± 2 x + 1 − C
The general solution of the DE is;
y = ( x + 1 ) ± 2 x + 1 − C 2 y=\frac{(x+1)\pm \sqrt{2x+1-C}}{2} y = 2 ( x + 1 ) ± 2 x + 1 − C
Comments