1)
I ˉ = 1 12 b d 3 \bar I=\frac{1}{12}bd^{3} I ˉ = 12 1 b d 3
I 1 x ˉ = 1 12 ∗ 24 ∗ 6 3 = 432 m m 4 \bar {I_{1_x}}=\frac{1}{12}*24*6^{3}=432mm^{4} I 1 x ˉ = 12 1 ∗ 24 ∗ 6 3 = 432 m m 4
I 2 x ˉ = 1 12 ∗ 8 ∗ 4 8 3 = 73728 m m 4 \bar {I_{2_x}}=\frac{1}{12}*8*48^{3}=73728mm^{4} I 2 x ˉ = 12 1 ∗ 8 ∗ 4 8 3 = 73728 m m 4
I 3 x ˉ = 1 12 ∗ 48 ∗ 6 3 = 864 m m 4 \bar {I_{3_x}}=\frac{1}{12}*48*6^{3}=864mm^{4} I 3 x ˉ = 12 1 ∗ 48 ∗ 6 3 = 864 m m 4
I 1 x = I 1 x ˉ + A h 2 I_{1_x}=\bar {I_{1_x}}+Ah^{2} I 1 x = I 1 x ˉ + A h 2
= 432 + 24 ∗ 6 ∗ ( 24 + 3 ) 2 = 105408 m m 4 =432+24*6*(24+3)^{2}=105408mm^{4} = 432 + 24 ∗ 6 ∗ ( 24 + 3 ) 2 = 105408 m m 4
I 3 x = I 3 x ˉ + A h 2 I_{3_x}=\bar {I_{3_x}}+Ah^{2} I 3 x = I 3 x ˉ + A h 2
= 864 + 48 ∗ 6 ∗ ( 24 + 3 ) 2 = 210816 m m 4 =864+48*6*(24+3)^{2}=210816mm^{4} = 864 + 48 ∗ 6 ∗ ( 24 + 3 ) 2 = 210816 m m 4
I x = ( 105408 + 73728 + 210816 ) m m 4 I_x=(105408+73728+210816)mm^{4} I x = ( 105408 + 73728 + 210816 ) m m 4
= 390 ∗ 1 0 3 m m 4 =390*10^{3}mm^{4} = 390 ∗ 1 0 3 m m 4
2)
Position of the neutral axis from the base of the section is,
y = A 1 y 1 + A 2 y 2 + A 3 y 3 A 1 + A 2 + A 3 y=\frac{A_1y_1+A_2y_2+A_3y_3}{A_1+A_2+A_3} y = A 1 + A 2 + A 3 A 1 y 1 + A 2 y 2 + A 3 y 3
= a ∗ t ∗ t 2 + 2 a ∗ t ∗ ( a S i n 60 ° + t ) + a ∗ t ∗ ( 2 a S i n 60 ° + 2 t ) a ∗ t + 2 a ∗ t + a ∗ t =\frac{a*t*\frac{t}{2}+2a*t*(aSin60°+t)+a*t*(2aSin60°+2t)}{a*t+2a*t+a*t} = a ∗ t + 2 a ∗ t + a ∗ t a ∗ t ∗ 2 t + 2 a ∗ t ∗ ( a S in 60° + t ) + a ∗ t ∗ ( 2 a S in 60° + 2 t )
= 4.5 t + 3 a 4 =\frac{4.5t+\sqrt{\smash[b]{3}}a}{4} = 4 4.5 t + 3 a
Maximum direct stress in the section,
σ = M y I \sigma =\frac{My}{I} σ = I M y
I=(I1 +A1 d1 2)+(I 2 +A2 d2 2 )+(I3 +A3 d3 2 )
I = ( a t 3 12 + a t ∗ ( a 3 + t 2 ) 2 ) + ( 1 12 ∗ t S i n 60 ( 2 a S i n 60 ) 3 + 2 a t ∗ 0 ) I=(\frac{at^{3}}{12}+at*(\frac{a\sqrt{\smash[b]{3}}+t}{2})^{2})+(\frac{1}{12}*\frac{t}{Sin 60}(2aSin60)^{3}+2at*0) I = ( 12 a t 3 + a t ∗ ( 2 a 3 + t ) 2 ) + ( 12 1 ∗ S in 60 t ( 2 a S in 60 ) 3 + 2 a t ∗ 0 )
+ ( a t 3 12 + a t ∗ ( a 3 + t 2 ) 2 ) +(\frac{at^{3}}{12}+at*(\frac{a\sqrt{\smash[b]{3}}+t}{2})^{2}) + ( 12 a t 3 + a t ∗ ( 2 a 3 + t ) 2 )
= 7 a t 3 + 24 a 3 t + 12 3 a 2 t 2 12 =\frac{7at^{3}+24a^{3}t+12\sqrt{\smash[b]{3}}a^{2}t^{2}}{12} = 12 7 a t 3 + 24 a 3 t + 12 3 a 2 t 2
∴ \therefore ∴ Substituting the above values,
σ = M ∗ ( 2 a S i n 60 ° + 2 t 2 ) 7 a t 3 + 24 a 3 t + 12 3 a 2 t 2 12 \sigma =\frac{M*(\frac{2aSin60°+2t}{2})}{\frac{7at^{3}+24a^{3}t+12\sqrt{\smash[b]{3}}a^{2}t^{2}}{12}} σ = 12 7 a t 3 + 24 a 3 t + 12 3 a 2 t 2 M ∗ ( 2 2 a S in 60° + 2 t )
= 6 M ∗ ( a 3 + 2 t 7 a t 3 + 24 a 3 t + 12 3 a 2 t 2 =\frac{6M*(a\sqrt{\smash[b]{3}}+2t}{7at^{3}+24a^{3}t+12\sqrt{\smash[b]{3}}a^{2}t^{2}} = 7 a t 3 + 24 a 3 t + 12 3 a 2 t 2 6 M ∗ ( a 3 + 2 t
Comments