Answer to Question #242268 in Mechanical Engineering for Mom

Question #242268

1. Determine the Moment of inertia for the singly-symmetrical cross-section 

shown in figure. (5)

2. The thin-walled beam section shown in Figure is subjected to a bending 

moment M applied in a negative sense. Find the position of the neutral 

  • axis and the maximum direct stress in the section.
1
Expert's answer
2021-09-26T11:56:59-0400

1)


"\\bar I=\\frac{1}{12}bd^{3}"

"\\bar {I_{1_x}}=\\frac{1}{12}*24*6^{3}=432mm^{4}"

"\\bar {I_{2_x}}=\\frac{1}{12}*8*48^{3}=73728mm^{4}"

"\\bar {I_{3_x}}=\\frac{1}{12}*48*6^{3}=864mm^{4}"

"I_{1_x}=\\bar {I_{1_x}}+Ah^{2}"

"=432+24*6*(24+3)^{2}=105408mm^{4}"

"I_{3_x}=\\bar {I_{3_x}}+Ah^{2}"

"=864+48*6*(24+3)^{2}=210816mm^{4}"

"I_x=(105408+73728+210816)mm^{4}"

"=390*10^{3}mm^{4}"


2)



Position of the neutral axis from the base of the section is,

"y=\\frac{A_1y_1+A_2y_2+A_3y_3}{A_1+A_2+A_3}"

"=\\frac{a*t*\\frac{t}{2}+2a*t*(aSin60\u00b0+t)+a*t*(2aSin60\u00b0+2t)}{a*t+2a*t+a*t}"

"=\\frac{4.5t+\\sqrt{\\smash[b]{3}}a}{4}"


Maximum direct stress in the section,

"\\sigma =\\frac{My}{I}"

I=(I1+A1d12)+(I2+A2d22)+(I3+A3d32)

"I=(\\frac{at^{3}}{12}+at*(\\frac{a\\sqrt{\\smash[b]{3}}+t}{2})^{2})+(\\frac{1}{12}*\\frac{t}{Sin 60}(2aSin60)^{3}+2at*0)"

"+(\\frac{at^{3}}{12}+at*(\\frac{a\\sqrt{\\smash[b]{3}}+t}{2})^{2})"

"=\\frac{7at^{3}+24a^{3}t+12\\sqrt{\\smash[b]{3}}a^{2}t^{2}}{12}"

"\\therefore" Substituting the above values,

"\\sigma =\\frac{M*(\\frac{2aSin60\u00b0+2t}{2})}{\\frac{7at^{3}+24a^{3}t+12\\sqrt{\\smash[b]{3}}a^{2}t^{2}}{12}}"

"=\\frac{6M*(a\\sqrt{\\smash[b]{3}}+2t}{7at^{3}+24a^{3}t+12\\sqrt{\\smash[b]{3}}a^{2}t^{2}}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS