1. Determine the Moment of inertia for the singly-symmetrical cross-section
shown in figure. (5)
2. The thin-walled beam section shown in Figure is subjected to a bending
moment M applied in a negative sense. Find the position of the neutral
1)
"\\bar I=\\frac{1}{12}bd^{3}"
"\\bar {I_{1_x}}=\\frac{1}{12}*24*6^{3}=432mm^{4}"
"\\bar {I_{2_x}}=\\frac{1}{12}*8*48^{3}=73728mm^{4}"
"\\bar {I_{3_x}}=\\frac{1}{12}*48*6^{3}=864mm^{4}"
"I_{1_x}=\\bar {I_{1_x}}+Ah^{2}"
"=432+24*6*(24+3)^{2}=105408mm^{4}"
"I_{3_x}=\\bar {I_{3_x}}+Ah^{2}"
"=864+48*6*(24+3)^{2}=210816mm^{4}"
"I_x=(105408+73728+210816)mm^{4}"
"=390*10^{3}mm^{4}"
2)
Position of the neutral axis from the base of the section is,
"y=\\frac{A_1y_1+A_2y_2+A_3y_3}{A_1+A_2+A_3}"
"=\\frac{a*t*\\frac{t}{2}+2a*t*(aSin60\u00b0+t)+a*t*(2aSin60\u00b0+2t)}{a*t+2a*t+a*t}"
"=\\frac{4.5t+\\sqrt{\\smash[b]{3}}a}{4}"
Maximum direct stress in the section,
"\\sigma =\\frac{My}{I}"
I=(I1+A1d12)+(I2+A2d22)+(I3+A3d32)
"I=(\\frac{at^{3}}{12}+at*(\\frac{a\\sqrt{\\smash[b]{3}}+t}{2})^{2})+(\\frac{1}{12}*\\frac{t}{Sin 60}(2aSin60)^{3}+2at*0)"
"+(\\frac{at^{3}}{12}+at*(\\frac{a\\sqrt{\\smash[b]{3}}+t}{2})^{2})"
"=\\frac{7at^{3}+24a^{3}t+12\\sqrt{\\smash[b]{3}}a^{2}t^{2}}{12}"
"\\therefore" Substituting the above values,
"\\sigma =\\frac{M*(\\frac{2aSin60\u00b0+2t}{2})}{\\frac{7at^{3}+24a^{3}t+12\\sqrt{\\smash[b]{3}}a^{2}t^{2}}{12}}"
"=\\frac{6M*(a\\sqrt{\\smash[b]{3}}+2t}{7at^{3}+24a^{3}t+12\\sqrt{\\smash[b]{3}}a^{2}t^{2}}"
Comments
Leave a comment