Question #238850

Air enters the compressor of a gas turbine at 100 kPa and 25°C. For a pressure ratio of 5 and a maximum temperature of 850°C determine the back work ratio and the thermal efficiency using the Brayton cycle.



1
Expert's answer
2021-09-19T00:31:08-0400


P1=100kPa

T1=25°C=298K

r=5

T3=850°C=1123K

at T1 and P1,

h1= 295.17+(298295300295)(300.9295.17)295.17+(\frac{298-295}{300-295})*(300.9-295.17)

=298.608kJ/kg

(pr)1=1.3068+(298295300295)(1.3861.3068)1.3068+(\frac{298-295}{300-295})*(1.386-1.3068)

=1.35432

(pr)2=(P2P1)(pr)1(\frac{P_2}{P_1})*(p_r)_1

=5*1.35432

=6.7716

At (pr)2 by interpolation,

h2=472.24+(6.77166.7427.2686.742)(482.49472.24)472.24+(\frac{6.7716-6.742}{7.268-6.742})*(482.49-472.24)

=472.8186kJ/kg

At T3,

h3=1184.28+(1123112011401120)(1207.571184.28)1184.28+(\frac{1123-1120}{1140-1120})*(1207.57-1184.28)

=1187.77kJ/kg

(pr)3=179.7+(1123112011401120)(193.1179.7)179.7+(\frac{1123-1120}{1140-1120})*(193.1-179.7)

=181.71

(pr)4=(P4P3)(pr)3(\frac{P_4}{P_3})*(p_r)_3

=15181.71\frac{1}{5}*181.71

=36.342

At (pr)4 by interpolation,

h4=756.44+(36.34235.537.3535.5)(767.29756.44)756.44+(\frac{36.342-35.5}{37.35-35.5})*(767.29-756.44)

=767.38kJ/kg

Back work ratio =WcWt=h2h1h3h4\frac{W_c}{W_t}=\frac{h_2-h_1}{h_3-h_4}

=472.8168298.6081187.77767.38\frac{472.8168-298.608}{1187.77-767.38}

=0.4144

bwr=41.44%

Efficiency =(1187.77767.38)(472.8168298.608)1187.77472.8168\frac{(1187.77-767.38)-(472.8168-298.608)}{1187.77-472.8168}

=0.344

=34.4%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS