Question #238201

The inductance of moving iron ammeter in micro henry is given by expression: L=20+5θ-2θ2 Where θ is deflection in radians from the zero position. Determine the angular in radians for a current of 10A if the for a current of 5A is 300.Also determine the spring constant


1
Expert's answer
2021-09-17T02:36:34-0400
L=20+5θ2θ2,μHL=20+5\theta-2\theta^2, \mu HdLdθ=54θ,μH/rad\dfrac{dL}{d\theta}=5-4\theta , \mu H/radθ=I22kdLdθ\theta=\dfrac{I^2}{2k}\cdot\dfrac{dL}{d\theta}k=I22θ(54θ)×106k=\dfrac{I^2}{2\theta}(5-4 \theta )\times10^{-6}


For a current I=10 A,I=10\ A, θ=30°=π6 rad.\theta=30\degree=\dfrac{\pi}{6}\ rad.



k=(10)22(π6)(54(π6))×106k=\dfrac{(10)^2}{2\big(\dfrac{\pi}{6}\big)}\bigg(5-4 \big(\dfrac{\pi}{6}\big)\bigg)\times10^{-6}=(15π2)×104Nm/rad2.775×104 Nm/rad=\bigg(\dfrac{15}{\pi}-2\bigg)\times10^{-4} Nm/rad\approx2.775\times10^{-4}\ Nm/rad2kθ×106=5I22I2θ2k\theta\times10^{6}=5I^2-2I^2\thetaθ=2.5I2106k+I2\theta=\dfrac{2.5I^2}{10^{6}k+I^2}θ=2.5(10)2106(15π2)×104+(10)2 rad\theta=\dfrac{2.5(10)^2}{10^{6}\cdot\big(\dfrac{15}{\pi}-2\big)\times10^{-4}+(10)^2}\ rad0.6623 rad38°\approx0.6623\ rad\approx38\degreeθ=38°\theta=38\degreek=2.775×104 Nm/radk=2.775\times10^{-4}\ Nm/rad

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS