Let d= the diameter of the hemisphere, l=the overall length of the tank
Find the volume of the hemisphere
V1=21(34π(2d)3)=12πd3 Find the volume of the right circular cylinder
V2=π(2d)2(l−2(2d))=8πd2(l−d)Find the mass of liquid inside the tank if it is half full
m=ρ(V1+V2)=ρ24πd2(2d+3l−3d)
=ρ24πd2(3l−d)
m=1.2 10−3 m3kgm⋅24π(1 m)2(3(4 m)−1 m)
=550π kgm≈1728 kg Find the mass of liquid inside the tank if it is half full
W=mg
W=550π kgm(9.81 m/s2)≈16950 N
V=2(21)(34π(2d)3)=6πd3 b) Find the volume of the tank
V=2V1+V2
=2(12πd3)+8πd2(l−d)
=24πd2(4d+3l−3d)
=24πd2(3l+d)
V=24π(1 m)2(3(4 m)+1 m)=2413π m3 Find the total time to fill the tank assuming it is initially empty
t=0.225 m3/min2413π m3≈7.6 min
Comments