Answer to Question #225569 in Mechanical Engineering for john luvis

Question #225569

An artery with dimensions OD = 20 mm and ID = 17 mm is subjected to pressures ranging from 80 mmHg to 130 mmHg.

(a) Determine the diameter of the artery of the systolic (highest) and diastolic (lowest) points. The material in the artery follows the relationship σ = kε 2 , with k = 25 MPa.

(b) Plot the pressure–radius curve due to the internal pressure from the stress–strain response of the material.


1
Expert's answer
2021-08-13T02:14:40-0400

Part a

Even though the radial strain and the circumferential strain physically represent two different things, they are numerically equal.

First, we need to calculate the hoop stress and then use the material relation, we can calculate the hoop strain, and from the Houston, we can calculate the changing radius.

Hoop stress=Pd2tσd=106651721.5=60439.5PaHoop stress at systolic,σs=17331.91721.5=98241.1PaStress strain relation,σ=25106ε2then εd;60349.5=25106εd2εd=2.41398103=0.049132εd=Change in diameterDiameter0.049132=Change in diameter17Change in diameter=0.835Final diameter=17+0.835=17.835mmHoop \space stress = \frac{Pd}{2t}\\ \sigma_d= \frac{10665*17}{2*1.5}=60439.5 Pa\\ Hoop \space stress \space at \space systolic , \sigma_s= \frac{17331.9*17}{2*1.5}=98241.1 Pa\\ Stress \space strain \space relation, \sigma = 25*10^6 \varepsilon^2\\ then \space \varepsilon_d; 60349.5= 25*10^6* \varepsilon_d^2\\ \varepsilon_d = \sqrt{2.41398*10^{-3}}=0.049132\\ \varepsilon_d= \frac{Change \space in \space diameter}{Diameter}\\ 0.049132= \frac{Change \space in \space diameter}{17}\\ Change \space in \space diameter = 0.835 \\ Final \space diameter = 17+0.835=17.835 mm\\

Similarly for systolic

εs;98241.1=25106εs2εs=39296103εs=0.06268=Diameter changeOriginal diameterDiameter change=170.06268=1.06577mmFinal diameter=18.6577mm\varepsilon_s; 98241.1= 25*10^6 *\varepsilon_s^2\\ \varepsilon_s= \sqrt{39296*10^{-3}}\\ \varepsilon_s = 0.06268 = \frac{Diameter \space change }{Original \space diameter}\\ Diameter \space change = 17*0.06268=1.06577 mm\\ Final \space diameter = 18.6577 mm


Part b

The relation between strain and pressure

ε=Pd2t125106Radius=(1+ε)RFinal Radius=(1+P1721.5125106)8.5\varepsilon= \sqrt{\frac{Pd}{2t}* \frac{1}{25*10^6}}\\ Radius = (1+ \varepsilon)R\\ Final \space Radius = (1+\sqrt{\frac{P*17}{2*1.5}* \frac{1}{25*10^6}})*8.5\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment