Question #214707

The following particulars relate to a symmetrical tangent cam operating a roller follower :-

Least radius = 36 mm, nose radius = 30 mm, roller radius = 21 mm, distance between cam 

shaft and nose centre = 28 mm, angle of action of cam = 150°, cam shaft speed = 750 r.p.m. 

Assuming that there is no dwell between ascent and descent, determine the lift of the valve 

and the acceleration of the follower at a point where straight flank merges into the circular 

nose.


1
Expert's answer
2021-07-08T06:22:45-0400

Total lift +r1=PO+r220+3016=d5Total \space lift \space+r_1=PO+r_2\\ 20+30-16=d-5


Flank radius, R

R=r12r22+d22r1dcosα2(r1r2dcosα)R=30252+45223045dcos752(30545cos75)R=82.42mmR= \frac{r^2_1-r_2^2+d^2-2r_1 d cos \alpha}{2(r_1-r_2-d cos \alpha)}\\ R= \frac{30^2-5^2+45^2-2*30*45 d cos75}{2(30-5-45 cos 75)}\\ R=82.42 mm


Flank angle ϕ\phi

POsinϕ=PQsin(180ϕ)sinϕ=sin(18075)84.425    ϕ=34.20\frac{PO}{sin \phi}= \frac{PQ}{sin(180- \phi)}\\ sin \phi = \frac{sin(180- 75)}{84.42-5} \implies \phi = 34.2 ^0


Acceleration at the end of the contact with the flank when θ=ϕ=29.60\theta = \phi=29.6^0

a=ω2(Rr1)cosϕa=(2π60060)2(82.430)103cos34.2a=171.09m/s2a=\omega ^2(R-r_1) cos \phi \\ a=(\frac{2 \pi *600}{60}) ^2 (82.4-30)*10^{-3} cos 34.2\\ a=171.09 m/s^2


Reterdation at the beginning of the contact with the nose

a=ω2(Rr1)cosϕa=(2π60060)2(45)103cos29.6a=146.92m/s2a=-\omega ^2(R-r_1) cos \phi \\ a=-(\frac{2 \pi *600}{60}) ^2 (45)*10^{-3} cos 29.6\\ a=-146.92 m/s^2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS