Question #192189

The beam shown (Figure 1) is supported by a pin at A

A and a cable at B

B. Two loads P

PP = 12 kN

kN are applied straight down from the centerline of the bottom face. Determine the state of stress at the point shown (Figure 2) in a section 2 m from the wall. The dimensions are w

ww = 6 cm

cm , h

hh = 10.5 cm

cm , L

LL = 0.8 m

m , a

aa = 1.5 cm

cm , and b

bb = 4 cm

cm .


What is the normal stress at the point due to the axial load in the beam? Let a compressive stress be negative.


1
Expert's answer
2021-05-13T07:19:51-0400

Fh=Fcos30=RH\sum F_h=Fcos30=R_H

Fv=Fsin30+Rv=12+12\sum F_v=Fsin30+R_v=12+12

MB=0    120.8+121.6=Rv2.4    Rv=12\sum M_B=0 \implies 12*0.8+12*1.6=R_v*2.4 \implies R_v=12

F=2412sin30=24kNF=\frac{24-12}{sin30}=24kN

RH=Fcos30=24cos30=20.78kNR_H=Fcos30=24cos30=20.78kN

A. Axial load=RH=Fcos30=20.78kN=R_H=Fcos30=-20.78kN

σa=RHA=20.7810000.1050.06=3.298106N/m2=3.298106MPa\sigma_a=\frac{R_H}{A}=\frac{-20.78 *1000}{0.105*0.06}=-3.298*10^6 N/m^2 =-3.298*10^6MPa


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS