A solid shaft is to transmit 800kw at 300rpm. if the shaft is not to twist more than 1 degree on a length of 20 diameters and the shear stress is not to exceed 50mn/m2 with a modulus of rigidity of 90gn/m2, design the shaft by determining a suitable diameter
Given:
"\\text{Power}(P)=800kW"
RPM(N)=300rpm
Maximum angle of twist "(\\theta)" ="1^0=\\frac{\\pi}{180}=0.01745\\: \\text{radians}"
Length (L)=20"\\times \\text{diameter}(d)"
maximum shear stress("\\tau_s" )=50N/mm2
Modulus of rigidity(G)=90 G N/mm2
To find : Suitable diameter of shaft
Formula : Torsional equation
"\\frac{\\text{Torque}(T)}{\\text{Polar M I}(I_p)}=\\frac{\\tau_s}{\\text{Radius}(R)}=\\frac{G\\times \\theta}{L}"
Power(P) ="\\frac{2\\pi \\times N\\times T}{60}"
Calculation:
Power(P) ="\\frac{2\\pi \\times N\\times T}{60}"
800x103="\\frac{2\\pi \\times 300\\times T}{60}"
T=25464.79 N-m
For solid shaft considering strength of shaft,
"T=\\frac{\\pi}{16}\\times \\tau_s\\times d^3"
After substituting respective values , we get
Diameter(d)=137.40 mm=138 mm (approximately)
Considering angle of twist of shaft,
"T=\\frac{\\pi}{16}\\times \\frac{G\\theta}{L}\\times d^3"
"T=\\frac{\\pi}{16}\\times \\frac{90\\times1000\\times 0.01745}{20d}\\times d^3"
"25464.79\\times 10^3=\\frac{\\pi}{32}\\times \\frac{90\\times1000\\times 0.01745}{20d}\\times d^4"
d=148.93 mm
Considering larger diameter as suitable diameter of shaft(d)=149 mm
Comments
Leave a comment