Answer to Question #191463 in Mechanical Engineering for Brian

Question #191463

A solid shaft is to transmit 800kw at 300rpm. if the shaft is not to twist more than 1 degree on a length of 20 diameters and the shear stress is not to exceed 50mn/m2 with a modulus of rigidity of 90gn/m2, design the shaft by determining a suitable diameter


1
Expert's answer
2021-05-13T07:19:43-0400

Given:

Power(P)=800kW\text{Power}(P)=800kW

RPM(N)=300rpm

Maximum angle of twist (θ)(\theta) =10=π180=0.01745radians1^0=\frac{\pi}{180}=0.01745\: \text{radians}

Length (L)=20×diameter(d)\times \text{diameter}(d)

maximum shear stress(τs\tau_s )=50N/mm2

Modulus of rigidity(G)=90 G N/mm2

To find : Suitable diameter of shaft

Formula : Torsional equation

Torque(T)Polar M I(Ip)=τsRadius(R)=G×θL\frac{\text{Torque}(T)}{\text{Polar M I}(I_p)}=\frac{\tau_s}{\text{Radius}(R)}=\frac{G\times \theta}{L}

Power(P) =2π×N×T60\frac{2\pi \times N\times T}{60}


Calculation:

Power(P) =2π×N×T60\frac{2\pi \times N\times T}{60}


800x103=2π×300×T60\frac{2\pi \times 300\times T}{60}

T=25464.79 N-m

For solid shaft considering strength of shaft,

T=π16×τs×d3T=\frac{\pi}{16}\times \tau_s\times d^3

After substituting respective values , we get

Diameter(d)=137.40 mm=138 mm (approximately)

Considering angle of twist of shaft,

T=π16×GθL×d3T=\frac{\pi}{16}\times \frac{G\theta}{L}\times d^3

T=π16×90×1000×0.0174520d×d3T=\frac{\pi}{16}\times \frac{90\times1000\times 0.01745}{20d}\times d^3

25464.79×103=π32×90×1000×0.0174520d×d425464.79\times 10^3=\frac{\pi}{32}\times \frac{90\times1000\times 0.01745}{20d}\times d^4

d=148.93 mm

Considering larger diameter as suitable diameter of shaft(d)=149 mm






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment