An air compressor takes air in at the state of the surroundings 100 kPa, 300 K. The air exits at 400 kPa, 200°C at the rate of 2 kg/s. Determine the minimum compressor work input.
s0−s2=ST0−ST2−Rln(P0P2)s_0 - s_2 = S_T^0 -S_T^2-Rln(\frac{P_0}{P_2})s0−s2=ST0−ST2−Rln(P2P0)
s0−s2=6.86926−7.3303−0.287ln(100400)=−0.06317kJkgKs_0 - s_2 = 6.86926-7.3303-0.287 ln(\frac{100}{400}) =-0.06317 \frac{kJ}{kg K}s0−s2=6.86926−7.3303−0.287ln(400100)=−0.06317kgKkJ ...from Steam table
ψ1=0\psi_1 = 0ψ1=0 at ambient condition
ψ2=h2−h0+T0(S0−S2)\psi_2 = h_2-h_0 + T_0(S_0-S_2)ψ2=h2−h0+T0(S0−S2)
ψ2=475.79−300.473+300(−0.06317)=156.365\psi_2 = 475.79-300.473 + 300(-0.06317) = 156.365ψ2=475.79−300.473+300(−0.06317)=156.365 kJkg\frac{kJ}{kg }kgkJ
W˙REV=m˙(ψ2−ψ1)=312.73=W˙c\dot{W}^{REV} = \dot{m}(\psi_2-\psi_1) = 312.73 = \dot{W}_cW˙REV=m˙(ψ2−ψ1)=312.73=W˙c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments