Question #177045

Simple two stage (effect) parallel flow multi-effect evaporation unit with vapour compression A two-effect thermal vapor-compression system is designed at the following operating conditions: Motive steam ms: Ps: Ts mm; Pm Tm Feed water mf 1 mt2 Cooling Sea water md2 mev: Pev: Tev Demiater (1) (2) Intake Heating Sea water Steam mm md1 Down condenser md2-mev md Distillate Condensate mb 1 mb2 mb Rejected brine mev The areas of the exchangers are equal: Ae1=Ae2 - Boiling temperatures, T61= 75°C; Tb2, of 70°C; Feed water temperature; T= 65°C. - Motive steam pressure, Pm = 800 kPa. - Brine reject concentration, Xb= 60,000 ppm; Intake seawater salinity, Xp = 30,000 ppm - Intake seawater temperature, Tcw = 15°C System capacity, ma= 1 kg/s Determine the specific heat transfer area, the entrainment ratio, and the flow rates of: entrainment vapor; motive steam; supply steam and cooling water, and the performance ratio.


1
Expert's answer
2021-04-01T01:11:49-0400

As per the data

Qs=mcpTQ_s=mc_p \triangle T

Stream mass flow rate QsCpT=80004.2×(7570)=142.85kg/s\frac{Q_s}{C_p \triangle T}= \frac{8000}{4.2 \times(75-70)}=142.85 kg/s

Qs=QkQ_s=Q_k

mCpT=mCpTmC_p \triangle T=mC_p \triangle T

Specific heat of sea water = 3.85 kg/s

msCpsT=mcCpcTm_s C_{p_s} \triangle T=m_cC_{p_c} \triangle T

mc=msCpsTCpcT=142.85×4.2×(7570)3.85×(6515)=15.58kg/sm_c= \frac{m_s C_{p_s} \triangle T}{C_{p_c} \triangle T}= \frac{142.85 \times4.2 \times (75-70)}{3.85 \times(65-15)}=15.58 kg/s


Qs=3000kW;Tcw=15OC;Tb1=75oC;Tb2=70oC;TF=65oCQ_s=3000kW ; T_{cw}=15^OC; T_{b1}=75^oC; T_{b2}=70^oC; T_F=65^oC

xf=35000,xb=30000x_f=35000, x_b=30000

Ae1=Ae2A_{e1}=A_{e2}

Ue1=Ue2=2.25kW/m2 oCU_{e1}=U_{e2}=2.25 kW/m^{2 \space o}C

Uc=1.9kW/m2 oCU_{c}=1.9 kW/m^{2 \space o}C

Cp=4.2C_p=4.2


T1=7515=60oC\triangle T_1=75-15=60^oC

T2=7065=5oC\triangle T_2=70-65=5^oC

TIn(T1T2)=60.5In605=22.16oC\triangle TIn(\triangle T_1-\triangle T_2)= \frac{60.5}{In \frac{60}{5}}=22.16 ^oC

U=2.25kW/m2 oC=2250W/m2 oCU=2.25 kW/m^{2 \space o}C=2250 W/m^{2 \space o}C

Q=UATIn(T1T2)Q=UA\triangle TIn(\triangle T_1-\triangle T_2)

A=QUTIn(T1T2)=80002.250×22.13=60.25m2A = \frac{Q}{U\triangle TIn(\triangle T_1-\triangle T_2) }= \frac{8000}{2.250 \times 22.13}=60.25 m^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS