1. ΔUmRkTia) WW=−316.5kJ=2.268kg=430J/kg.K=1.35=204.4°C=477.4K=∫Pdv=0 (constant volume process)=0
b)ΔUQQ=Q−W=ΔU=−316.5 kJ (heat transfer from system)
c)\∆Hv=q
∆H=−316.5=−316.5 kJ
d) \The change in entropy,
Specific heat at constant volume,
k=Cp/Cv, Cv+R=Cpk=Cv+R/Cvk×Cv=Cv+RCv(k−1)=RCv=R/k−1Cv=430/0.35Cv=1228.57J/kg.KCv=1.22857J/kg.K
Final temperature,
ΔU=m×Cv×(Tf−Ti)Tf−Ti=ΔU/m×CvTf=ΔU/m×Cv+TiTf=−316.5/2.268×1.22857+204.4Tf=90.812°C=363.812K
Entropy change,
ΔS=2.268×1.22857×ln(363.812/477.4)ΔS=−0.75711kJ/K
3.
Vt=14×10×3.5=490 m3Vp=0.2m3×50=10 m3Va (Volume of air)=490−10=480 m3
P=50×150kCal/hr×4.187kJ/kCal=31402.5kJ/hr
Pi=101.3kPaTi=16°C=273+16=289K
Tf=?t=10×60=600 s
Q=Pt=31402.5×600=18.84 MJ
Heat released after 10 minutes is therefore 18.84 MJ.
PV=nRT
101300×480=n×8.314×289
n = 20236.8 moles of air
but, 1 mole of air = 29
∴ the mass of air in the room = 586kg
mca∆T=Q586000×0.718×(T2−16)=18.84 MJ
T2=60.78°C
Comments