Answer to Question #171430 in Mechanical Engineering for edjee

Question #171430

A Stone has an initial velocity of 200 ft per see up to the right at a slope of 4 to 3. The components of acceleration are constant at a_x=-12 ft per second² and a_y=-20 ft per second². Compute the radius of curvature at the start and at the top of the path



1
Expert's answer
2021-04-01T01:04:32-0400
ax=12,ay=20a_x=-12, a_y=-20

r(t)=12i20i\vec r''(t)=-12\vec i-20\vec i

v0=200332+42i+200432+42j\vec v_0=200\cdot\dfrac{3}{\sqrt{3^2+4^2}}\vec i+200\cdot\dfrac{4}{\sqrt{3^2+4^2}}\vec j

v0=120i+160j\vec v_0=120\vec i+160\vec j

r(t)=(12012t)i+(16020t)j\vec r'(t)=(120-12t)\vec i+(160-20t)\vec j


r(t)×r(t)=ijk12012t16020t012t20t0\vec r'(t)\times \vec r''(t)=\begin{vmatrix} \vec i & \vec j & \vec k \\ 120-12t & 160-20t & 0 \\ -12t & -20t & 0 \end{vmatrix}

=k((12012t)(20t)(16020t)(12t))=\vec k((120-12t)(-20t)-(160-20t)(-12t))

=480tk=-480t\vec k

r(t)×r(t)=480t||\vec r'(t)\times \vec r''(t)||=480|t|

r(t)=(12012t)2+(16020t)2||\vec r'(t)||=\sqrt{(120-12t)^2+(160-20t)^2}


=434t2580t+2500=4\sqrt{34t^2-580t+2500}

K(t)=r(t)×r(t)r(t)3K(t)=\dfrac{||\vec r'(t)\times \vec r''(t)||}{||\vec r'(t)||^3}

=480t64(34t2580t+2500)3/2=\dfrac{480t}{64(34t^2-580t+2500)^{3/2}}

=15t2(34t2580t+2500)3/2=\dfrac{15t}{2(34t^2-580t+2500)^{3/2}}

R(t)=2(34t2580t+2500)3/215tR(t)=\dfrac{2(34t^2-580t+2500)^{3/2}}{15t}

At the start of the path: t=0t=0


R(0)=R(0)=\infin

At the top of the path: vy=0v_y=0


16020t=0160-20t=0

t=8t=8

R(8)=2(34(8)2580(8)+2500)3/215(8)=3.6(ft)R(8)=\dfrac{2(34(8)^2-580(8)+2500)^{3/2}}{15(8)}=3.6 (ft)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment