a x = − 12 , a y = − 20 a_x=-12, a_y=-20 a x = − 12 , a y = − 20
r ⃗ ′ ′ ( t ) = − 12 i ⃗ − 20 i ⃗ \vec r''(t)=-12\vec i-20\vec i r ′′ ( t ) = − 12 i − 20 i
v ⃗ 0 = 200 ⋅ 3 3 2 + 4 2 i ⃗ + 200 ⋅ 4 3 2 + 4 2 j ⃗ \vec v_0=200\cdot\dfrac{3}{\sqrt{3^2+4^2}}\vec i+200\cdot\dfrac{4}{\sqrt{3^2+4^2}}\vec j v 0 = 200 ⋅ 3 2 + 4 2 3 i + 200 ⋅ 3 2 + 4 2 4 j
v ⃗ 0 = 120 i ⃗ + 160 j ⃗ \vec v_0=120\vec i+160\vec j v 0 = 120 i + 160 j
r ⃗ ′ ( t ) = ( 120 − 12 t ) i ⃗ + ( 160 − 20 t ) j ⃗ \vec r'(t)=(120-12t)\vec i+(160-20t)\vec j r ′ ( t ) = ( 120 − 12 t ) i + ( 160 − 20 t ) j
r ⃗ ′ ( t ) × r ⃗ ′ ′ ( t ) = ∣ i ⃗ j ⃗ k ⃗ 120 − 12 t 160 − 20 t 0 − 12 t − 20 t 0 ∣ \vec r'(t)\times \vec r''(t)=\begin{vmatrix}
\vec i & \vec j & \vec k \\
120-12t & 160-20t & 0 \\
-12t & -20t & 0
\end{vmatrix} r ′ ( t ) × r ′′ ( t ) = ∣ ∣ i 120 − 12 t − 12 t j 160 − 20 t − 20 t k 0 0 ∣ ∣
= k ⃗ ( ( 120 − 12 t ) ( − 20 t ) − ( 160 − 20 t ) ( − 12 t ) ) =\vec k((120-12t)(-20t)-(160-20t)(-12t)) = k (( 120 − 12 t ) ( − 20 t ) − ( 160 − 20 t ) ( − 12 t ))
= − 480 t k ⃗ =-480t\vec k = − 480 t k
∣ ∣ r ⃗ ′ ( t ) × r ⃗ ′ ′ ( t ) ∣ ∣ = 480 ∣ t ∣ ||\vec r'(t)\times \vec r''(t)||=480|t| ∣∣ r ′ ( t ) × r ′′ ( t ) ∣∣ = 480∣ t ∣
∣ ∣ r ⃗ ′ ( t ) ∣ ∣ = ( 120 − 12 t ) 2 + ( 160 − 20 t ) 2 ||\vec r'(t)||=\sqrt{(120-12t)^2+(160-20t)^2} ∣∣ r ′ ( t ) ∣∣ = ( 120 − 12 t ) 2 + ( 160 − 20 t ) 2
= 4 34 t 2 − 580 t + 2500 =4\sqrt{34t^2-580t+2500} = 4 34 t 2 − 580 t + 2500
K ( t ) = ∣ ∣ r ⃗ ′ ( t ) × r ⃗ ′ ′ ( t ) ∣ ∣ ∣ ∣ r ⃗ ′ ( t ) ∣ ∣ 3 K(t)=\dfrac{||\vec r'(t)\times \vec r''(t)||}{||\vec r'(t)||^3} K ( t ) = ∣∣ r ′ ( t ) ∣ ∣ 3 ∣∣ r ′ ( t ) × r ′′ ( t ) ∣∣
= 480 t 64 ( 34 t 2 − 580 t + 2500 ) 3 / 2 =\dfrac{480t}{64(34t^2-580t+2500)^{3/2}} = 64 ( 34 t 2 − 580 t + 2500 ) 3/2 480 t
= 15 t 2 ( 34 t 2 − 580 t + 2500 ) 3 / 2 =\dfrac{15t}{2(34t^2-580t+2500)^{3/2}} = 2 ( 34 t 2 − 580 t + 2500 ) 3/2 15 t
R ( t ) = 2 ( 34 t 2 − 580 t + 2500 ) 3 / 2 15 t R(t)=\dfrac{2(34t^2-580t+2500)^{3/2}}{15t} R ( t ) = 15 t 2 ( 34 t 2 − 580 t + 2500 ) 3/2
At the start of the path: t = 0 t=0 t = 0
R ( 0 ) = ∞ R(0)=\infin R ( 0 ) = ∞ At the top of the path: v y = 0 v_y=0 v y = 0
160 − 20 t = 0 160-20t=0 160 − 20 t = 0
t = 8 t=8 t = 8
R ( 8 ) = 2 ( 34 ( 8 ) 2 − 580 ( 8 ) + 2500 ) 3 / 2 15 ( 8 ) = 3.6 ( f t ) R(8)=\dfrac{2(34(8)^2-580(8)+2500)^{3/2}}{15(8)}=3.6 (ft) R ( 8 ) = 15 ( 8 ) 2 ( 34 ( 8 ) 2 − 580 ( 8 ) + 2500 ) 3/2 = 3.6 ( f t )
Comments
Leave a comment