Solution
1) Final speed "\\omega_3"
"I_1=m_1k_1^2=800*0.26^2=54.08 kgm^2"
"I_2=m_2k_2^2=1350*0.225^2=68.34375 kgm^2"
Conservation of energy
"\\omega_1=\\frac{2\\pi N_1}{60}=\\frac{2\\pi*300}{60}=130.8997 rad\/sec"
"\\omega_2=\\frac{2\\pi N_2}{60}=\\frac{2\\pi*300}{60}=62.8319 rad\/sec" (Assume the speed of the rotor was originally at 300 rpm)
"I_1\\omega_1+I_2\\omega_2=(I_1+I_2)\\omega_3"
"\\omega_3=92.9004 rad\/sec= 889.133 rpm"
2) Energy lost
"K.E (before )=\\frac{1}{2}*I_1*\\omega_1^2+\\frac{1}{2}*I_2*\\omega_2^2=598215.06 Nm"
"K.E (after )=\\frac{1}{2}*(I_1+I_2)\\omega_3^2=528267.3961 Nm"
"Lost energy =598215.06-528267.3961=69947.66Nm"
Time taken to reach the speed
"T=\\frac{1}{2}W\\mu(R_1+R_2)=12906.25 Nmm=12.906 Nm"
Angular acceleration of the rotor
"I_2\\alpha_2=T=12.906 \\implies\\alpha_2=0.18885 rad\/sec"
"\\omega_3=\\omega_2+\\alpha_2t \\implies t = 159.22 sec"
Now constant resisting torque is 50Nm is applied
Torque on motor = "T_1=-12.906-50=-62.906 Nm"
"\\omega_3=\\omega_1+\\alpha_1t =\\omega_1+\\frac{T_1}{I_1}t =130.8997-\\frac{62.906}{54.08}t"
Considering the rotor
"\\omega_3=\\omega_2+\\alpha_2t= 62.8319+0.18885t"
Equating the two implies that t = 50.35 sec
Comments
Leave a comment