Determine a real root accurate to four decimal places of the following equation by using (i) Bisection Method (ii) Fixed Point Iteration Method (iii) Method of False Position and (iv) Newton-Raphson.
16-9(x - sin x) = 0; interval [2, 3]
1)Â Â Â Â Â Using Bisection Method:
Here 16-9(x-sinx)=0
∴-9⋅(x-sin(x))+16=0
Let f(x)=-9⋅(x-sin(x))+16
1st iteration :
Here f(2)=6.1837>0 and f(3)=-9.7299<0
∴ Now, Root lies between 2 and 3
x0=2+32=2.5
f(x0)=f(2.5)=-9â‹…(2.5-sin(2.5))+16=-1.1138<0
2nd iteration :
Here f(2)=6.1837>0 and f(2.5)=-1.1138<0
∴ Now, Root lies between 2 and 2.5
x1=2+2.52=2.25
f(x1)=f(2.25)=-9â‹…(2.25-sin(2.25))+16=2.7527>0
3rd iteration :
Here f(2.25)=2.7527>0 and f(2.5)=-1.1138<0
∴ Now, Root lies between 2.25 and 2.5
x2=2.25+2.52=2.375
f(x2)=f(2.375)=-9â‹…(2.375-sin(2.375))+16=0.8682>0
4th iteration :
Here f(2.375)=0.8682>0 and f(2.5)=-1.1138<0
∴ Now, Root lies between 2.375 and 2.5
x3=2.375+2.52=2.4375
Â
The real root accurate= 2.4375
2)Â Â Â Â Â Fixed Point Iteration Method:
Method-1
Let f(x)=-9⋅(x-sin(x))+16
Here 16-9(x-sinx)=0
∴-9⋅(x-sin(x))+16=0
∴-9⋅(x-sin(x))=-16
∴x=-16
∴ϕ(x)=-16
Here f(2)=6.1837>0 and f(3)=-9.7299<0
∴ Root lies between 2 and 3
3)Â Â Â Â Â Method of False Position
Here 16-9(x-sinx)=0
∴-9⋅(x-sin(x))+16=0
Let f(x)=-9⋅(x-sin(x))+16
 iteration :
Here f(2)=6.1837>0 and f(3)=-9.7299<0
∴ Now, Root lies between x0=2 and x1=3
x2=x0-f(x0)â‹…x1-x0f(x1)-f(x0)
x2=2-6.1837â‹…3-2-9.7299-6.1837
x2=2.4375
4)Â Â Â Â Â Newton-Raphson Method
Here 16-9(x-sinx)=0
∴-9⋅(x-sin(x))+16=0
Let f(x)=-9⋅(x-sin(x))+16
ddx(-9â‹…(x-sin(x))+16)=-9+9cos(x)
∴f′(x)=-9+9cos(x)
x0=2
1st iteration :
f(x0)=f(2)=-9â‹…(2-sin(2))+16=6.1837
f′(x0)=f′(2)=-9+9cos(2)=-12.7453
x1=x0-f(x0)f′(x0)
x1=2-6.1837-12.7453
x1=2.4852
2nd iteration :
f(x1)=f(2.4852)=-9â‹…(2.4852-sin(2.4852))+16=-0.874
f′(x1)=f′(2.4852)=-9+9cos(2.4852)=-16.1296
x2=x1-f(x1)f′(x1)
x2=2.4852--0.874-16.1296
x2=2.431
3rd iteration :
f(x2)=f(2.431)=-9â‹…(2.431-sin(2.431))+16=-0.0083
f′(x2)=f′(2.431)=-9+9cos(2.431)=-15.8217
x3=x2-f(x2)f′(x2)
 x3=2.431--0.0083-15.8217
x3=2.4305
4th iteration :
f(x3)=f(2.4305)=-9â‹…(2.4305-sin(2.4305))+16=0
f′(x3)=f′(2.4305)=-9+9cos(2.4305)=-15.8186
x4=x3-f(x3)f′(x3)
x4=2.4305-0-15.8186
x4=2.4305
Comments
Leave a comment