Form the partial differential equation by eliminating the arbitrary function f from z=f(x2-y2)
Form the partial differential equation by eliminating the arbitrary function f from z=f(xy)
Form the partial differential equation by eliminating the arbitrary function from z2-xy=f(x/z)
1)
Z=f(x2−y2)δZδx=2xf′(x2−y2)δZδy=−2yf′(x2−y2)∴yδZδx+xδZδy=0Z=f(x^2-y^2)\\ \dfrac{\delta{Z}}{\delta{x}}=2xf'(x^2-y^2)\\ \dfrac{\delta{Z}}{\delta{y}}=-2yf'(x^2-y^2)\\ \therefore\\ y\dfrac{\delta{Z}} {\delta{x}}+x\dfrac{\delta{Z}}{\delta{y}}=0Z=f(x2−y2)δxδZ=2xf′(x2−y2)δyδZ=−2yf′(x2−y2)∴yδxδZ+xδyδZ=0
2)
z=f(xy)δZδx=yf′(xy)δZδy=xf′(xy)∴xδZδx−yδZδy=0z=f(xy)\\ \dfrac{\delta{Z}}{\delta{x}}=yf'(xy)\\ \dfrac{\delta{Z}}{\delta{y}}=xf'(xy)\\ \therefore\\ x\dfrac{\delta{Z}}{\delta{x}}-y\dfrac{\delta{Z}}{\delta{y}}=0z=f(xy)δxδZ=yf′(xy)δyδZ=xf′(xy)∴xδxδZ−yδyδZ=0
3)
z2−xy=f(xz)2zδzδx−y=(1z−xz2δzδx)f′(xz)2zδzδy−x=(−xz2δzδy)f′(xz)∴δzδy(xyz2−1)−x2z2δzδx=−xzz^2-xy=f(\frac{x}{z})\\ 2z\dfrac{\delta{z}}{\delta{x}}-y=(\dfrac{1}{z}-\dfrac{x}{z^2}\dfrac{\delta{z}}{\delta{x}} )f'(\frac{x}{z})\\ 2z\dfrac{\delta{z}}{\delta{y}}-x=(-\dfrac{x}{z^2}\dfrac{\delta{z}}{\delta{y}} )f'(\frac{x}{z})\\ \therefore\\ \dfrac{\delta{z}}{\delta{y}}(\dfrac{xy}{z^2}-1)-\dfrac{x^2}{z^2}\dfrac{\delta{z}}{\delta{x}}=-\dfrac{x}{z}z2−xy=f(zx)2zδxδz−y=(z1−z2xδxδz)f′(zx)2zδyδz−x=(−z2xδyδz)f′(zx)∴δyδz(z2xy−1)−z2x2δxδz=−zx
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments