Question #226856

Find the charge q(t) flowing through an element if the current is


i(t) = 3e

−t + 20 cos(15t − π

6

⁄ )uA


q(0) = 1uC


1
Expert's answer
2021-08-18T09:06:01-0400

i(t)=3et+20cos(15tπ6)q=i(t)dt3et+20cos(15tπ6)dtApplytheSumRule:f(x)±g(x)dx=f(x)dx±g(x)dx=3etdt+20cos(15tπ6)dt=3et+43sin(15tπ6)=3et+43sin(15tπ6)+Cq(0)=1uC    c=43q=3et+43sin(15tπ6)43i(t)= 3e^{-t}+20\:cos\left(15t-\frac{\pi }{6}\right)\\ q= \int i(t) dt\\ \int \:3e^{-t}+20\cos \left(15t-\frac{\pi }{6}\right)dt\\ \mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\ =\int \:3e^{-t}dt+\int \:20\cos \left(15t-\frac{\pi }{6}\right)dt\\ =-3e^{-t}+\frac{4}{3}\sin \left(15t-\frac{\pi }{6}\right)\\ =-3e^{-t}+\frac{4}{3}\sin \left(15t-\frac{\pi }{6}\right)+C\\ q(0) = 1uC \implies c=-\frac{4}{3}\\ q=-3e^{-t}+\frac{4}{3}\sin \left(15t-\frac{\pi }{6}\right)-\frac{4}{3}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS