h(n)=nu(n)
x(n)=δ(n)−2δ(n−5)+δ(n−10)
Output y(n) is convolution of h(n) and x(n) .i.e
y(n)=x(n)∗h(n) (here '∗' implies convolution)
i.e. y(n)=k=−∞∑∞ x(n)h(n−k)
i.e. y(n)=k=−∞∑∞ [δ(k)−2δ(k−5)+δ(k−10)](n−k)u(n−k)
y(n)=k=−∞∑∞[(n−k)u(n−k)δ(k)−2(n−k)u(n−k)δ(k−5)+(n−k)u(n−k)δ(k−10)]
This equation on doing summation we get,
y(n)=nu(n)−2(n−5)u(n−5)+(n−10)u(n−10)
Substituting values for n we get ,
y(n)=0,1,2,3,4,5,6,4,3,2,1
i.e y(0)=0,y(1)=1,y(2)=2. so on and y(10)=1
i.e for all other values of n other than 0≤n≤10 we have y(n)=0
The output could be plotted as shown in the attached image.
Comments
Leave a comment