"h(n) = nu(n)"
"x(n) = \\delta(n)-2\\delta(n-5)+\\delta(n-10)"
Output "y(n)" is convolution of "h(n)" and "x(n)" .i.e
"y(n) = x(n) * h(n)" (here '"*"' implies convolution)
i.e. "y(n) = \\displaystyle\\sum_{k=-\\infin}^\\infin" "x(n)h(n-k)"
i.e. "y(n) = \\displaystyle\\sum_{k=-\\infin}^\\infin" "[\\delta(k)-2\\delta(k-5)+\\delta(k-10)](n-k)u(n-k)"
"y(n) = \\displaystyle\\sum_{k=-\\infin}^\\infin [(n-k)u(n-k)\\delta(k) - 2(n-k)u(n-k)\\delta(k-5)+\\\\(n-k)u(n-k)\\delta(k-10)]"
This equation on doing summation we get,
"y(n) = nu(n)-2(n-5)u(n-5)+(n-10)u(n-10)"
Substituting values for n we get ,
"y(n) ={0,1,2,3,4,5,6,4,3,2,1}"
i.e "y(0) = 0, y(1)=1,y(2) = 2. \\space so\\space on \\space and\\space y(10) = 1"
i.e for all other values of n other than "0\\le n \\le 10" we have "y(n)=0"
The output could be plotted as shown in the attached image.
Comments
Leave a comment