Answer to Question #140415 in Electrical Engineering for ahmet

Question #140415
Consider the discrete-time LTI system with impulse response
h(n) = n u(n).
(a) Find and sketch the output y(n) when the input x(n) is
x(n) = δ(n) - 2δ(n - 5) + δ(n - 10).
1
Expert's answer
2020-10-29T08:23:34-0400

h(n)=nu(n)h(n) = nu(n)

x(n)=δ(n)2δ(n5)+δ(n10)x(n) = \delta(n)-2\delta(n-5)+\delta(n-10)


Output y(n)y(n) is convolution of h(n)h(n) and x(n)x(n) .i.e


y(n)=x(n)h(n)y(n) = x(n) * h(n) (here '*' implies convolution)


i.e. y(n)=k=y(n) = \displaystyle\sum_{k=-\infin}^\infin x(n)h(nk)x(n)h(n-k)


i.e. y(n)=k=y(n) = \displaystyle\sum_{k=-\infin}^\infin [δ(k)2δ(k5)+δ(k10)](nk)u(nk)[\delta(k)-2\delta(k-5)+\delta(k-10)](n-k)u(n-k)


y(n)=k=[(nk)u(nk)δ(k)2(nk)u(nk)δ(k5)+(nk)u(nk)δ(k10)]y(n) = \displaystyle\sum_{k=-\infin}^\infin [(n-k)u(n-k)\delta(k) - 2(n-k)u(n-k)\delta(k-5)+\\(n-k)u(n-k)\delta(k-10)]

This equation on doing summation we get,


y(n)=nu(n)2(n5)u(n5)+(n10)u(n10)y(n) = nu(n)-2(n-5)u(n-5)+(n-10)u(n-10)


Substituting values for n we get ,


y(n)=0,1,2,3,4,5,6,4,3,2,1y(n) ={0,1,2,3,4,5,6,4,3,2,1}


i.e y(0)=0,y(1)=1,y(2)=2. so on and y(10)=1y(0) = 0, y(1)=1,y(2) = 2. \space so\space on \space and\space y(10) = 1


i.e for all other values of n other than 0n100\le n \le 10 we have y(n)=0y(n)=0


The output could be plotted as shown in the attached image.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment