Question #140412
A discrete-time system is described by the following rule
y(n)=(-1)^n x(n) + 2x(n -1)
where x is the input signal, and y the output signal.

Classify the system as:
i. causal/non-causal
ii. linear/nonlinear
iii. time-invariant/time-varying
1
Expert's answer
2020-10-29T08:23:47-0400

The function is ,

y(n)=(1)nx(n)+2x(n1)y(n) = (-1)^n x(n)+2x(n-1)


(i) Causal/Non Causal:

The impulse response of the system can be written as,


h(n)=(1)nδ(n)+2δ(n1)h(n) = (-1)^n \delta(n) + 2\delta(n-1 )


The impulse response is zero zero for all n<0n<0 which implies the system is Causal.


ii) Linear/Non Linear:


For input x1(n)x_1(n) let output be y1(n)y_1(n)

For input x2(n)x_2(n) let output be y2(n)y_2(n)


We have, y1(n)=(1)nx1(n)+2x1(n1)y_1(n) = (-1)^n x_1(n) + 2x_1(n-1)


y2(n)=(1)nx2(n)+2x2(n1)y_2(n) = (-1)^n x_2(n) + 2x_2(n-1)

If the input was ax1(1)+bx2(n)ax_1(1)+bx_2(n),out put is


y1,2=(1)n[ax1(n)+bx2(n)]+2[ax1(n1)+bx2(n1)]y_{1,2} = (-1)^n[ax_1(n)+bx_2(n)]+2[ax_1(n-1)+bx_2(n-1)]


=(1)nax1(n)+2ax1(n1)+(1)nbx2(n)+2bx2(n1)= (-1)^nax_1(n)+2ax_1(n-1)+(-1)^nbx_2(n)+2bx_2(n-1)

=ay1(n)+by2(n)= ay_1(n) + by_2(n)

Thus we observe the system satisfy the superposition principle,hence it is Linear.


iii) Time invariant/Time varying:


For a delayed input x(nn0)x(n-n_0) the output is


y(n,n0)=(1)nx(nn0)+2x(nn01)y(n,n_0) = (-1)^nx(n-n_0) + 2x(n-n_0-1) ......................(1)

For a delayed time nn0n-n_0, The output equation is,


y(nn0)=(1)nn0x(nn0)+2x(nn01)y(n-n_0) = (-1)^{n-n_0} x(n-n_0) + 2x(n-n_0-1) .............(2)


We observe that equation (1) and (2) are not equal. Which implies it is Time varying.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS