Find the area between the curves y^2 - y + x = 0 and y^2 = x + 3.
"A=\\int _a^b|f\\left(x\\right)-g\\left(x\\right)|dx"
"=\\int _{-3}^{-2}\\left|f_3\\left(x\\right)-f_4\\left(x\\right)\\right|dx+\\int _{-2}^{-\\frac{3}{4}}\\left|f_2\\left(x\\right)-f_3\\left(x\\right)\\right|dx+\\int _{-\\frac{3}{4}}^{\\frac{1}{4}}\\left|f_1\\left(x\\right)-f_2\\left(x\\right)\\right|dx"
"=\\int _{-3}^{-2}\\left|\\sqrt{x+3}-\\left(-\\sqrt{x+3}\\right)\\right|dx+\\int _{-2}^{-\\frac{3}{4}}\\left|\\frac{1-\\sqrt{1-4x}}{2}-\\sqrt{x+3}\\right|dx+\\int _{-\\frac{3}{4}}^{\\frac{1}{4}}\\left|\\frac{1+\\sqrt{1-4x}}{2}-\\frac{1-\\sqrt{1-4x}}{2}\\right|"
"=\\frac{4}{3}+\\frac{61}{24}+\\frac{4}{3}"
"=\\frac{125}{24}"
A= 5.2083
Comments
Leave a comment