An observer counts 360 vehicles per hour at a highway. Estimate the probability of having more than 4 vehicles arriving over a 25 second time interval.
Solution:
λ=\lambda=λ= 360 vehicles per hour=0.1=0.1=0.1 vehicles per second=2.5=2.5=2.5 vehicles per 25-second
X∼Poi(λ)X\sim Poi(\lambda)X∼Poi(λ)
P(X≥4)=1−P(X<4)=1−[P(X=0)+P(X=1)+P(X=2)+P(X=3)]P(X\ge4)=1-P(X<4) \\=1-[P(X=0)+P(X=1)+P(X=2)+P(X=3)]P(X≥4)=1−P(X<4)=1−[P(X=0)+P(X=1)+P(X=2)+P(X=3)]
=1−[e−2.5(2.5)00!+e−2.5(2.5)11!+e−2.5(2.5)22!+e−2.5(2.5)33!]=1-[e^{-2.5}\dfrac{(2.5)^0}{0!}+e^{-2.5}\dfrac{(2.5)^1}{1!}+e^{-2.5}\dfrac{(2.5)^2}{2!}+e^{-2.5}\dfrac{(2.5)^3}{3!}]=1−[e−2.50!(2.5)0+e−2.51!(2.5)1+e−2.52!(2.5)2+e−2.53!(2.5)3]
=0.24242=0.24242=0.24242
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment